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1 Introduction

In the present paper, flexural gravity wave transformation due to a heterogeneous ice-sheet
floating on the free surface with change in bottom topography is analyzed in finite water
depth. In case of flexural gravity waves, the wave energy density is defined as a combina-
tion of strain energy of the ice sheet, the potential energy and kinetic energy. Using the
expression for wave energy density, energy relation of a general type is derived based on law
of conservation of energy flux and alternately by the application of Green’s second identity.
Using shallow water approximation theory, explicit expressions for reflection and transmis-
sion coefficients, and the shoaling coefficient are derived by the help of continuity of the
surface elevation and the law of conservation of energy flux. These analytic results will be
of immense importance in the verification of the computational results obtained by various
numerical methods.

2 The general boundary value problem

Transformations of flexural gravity waves take place due to various physical processes which
are having adverse effects on wave characteristics and the floating structure (Porter and
Porter(2004), Williams and Squire (2004)). In the context of the present study, emphasis is
given on the flexural gravity wave transformation due to the change in bottom topography;,
thickness and rigidity of an infinitely extended floating ice-sheet which is modelled as an
elastic plate based on Euler-Bernouli beam equation. The problem is analyzed in the two
dimensional Cartesian co-ordinate system under the assumption of the linearized water wave
theory. The entire fluid domain is divided into three regions based on the bottom surface
topography y = h(x), where h(z) is defined as

hy for [ <x < oo, (Region 1)
h(x) = ¢ ho(z) for —l<x<l, (Region 0) (2.1)
ho for —oo <2z < —I, (Region 2).

Hereafter, subscripts 7 = 0, 1, 2 will denote the variables in the respective regions. The veloc-
ity potential ®;(z,y,t) is of the form ®;(x,y,t) = Re{¢;(x,y)e '} with ¢;(z,y) satisfying
the two dimensional Laplace equation along with the ice-covered surface boundary condition
o )&bj

(1+D 3

where D; = E;I;/{pg — pjdjw?}, Ejl; = E;di/12(1 — v7), K; = pw?/{pg — psd;w?}, Ej =
Young’s modulus, v; = Poisson’s ratio, p = density of water, p; = density of the ice-sheet,
g = acceleration due to gravity and d; = draft of the ice-sheet. The normal velocity vanishes
on the rigid bottom boundary. Finally, the general form of the far field condition is prescribed
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as given by
cosh kyg(h1 — y)
¢1 (l’, y) cosh kthl
cosh koo(hy — y)
¢2(I7 y) cosh kﬁzohg
with aj,,, j, m = 1,2 are the far field wave amplitudes which depend upon the nature of the

physical problem under consideration and the eigenvalues ko, j = 1,2 are real and positive
and satisfy the dispersion relations

{age™™0% 1+ ape™0"} as x — oo
(2.3)

{age™ ™% 1 gpe™®} as x — —oo

K; = (D;k} + 1kjo tanh kjoh;, j =1,2. (2.4)

3 Energy relations for plane flexural gravity waves

Unlike the case of gravity waves, the average total wave energy per unit surface area as-
sociated with the plane flexural gravity waves is the sum of the average potential energy,
kinetic energy and the surface energy. In the present context, the surface energy is gen-
erated due to the deflection of the floating ice sheet against the flexural rigidity of the
floating ice sheet and is same as the strain energy. For a plane flexural gravity wave profile
C(z,t) = Re{He*"*=%Y /21 the average potential energy V, kinetic energy 7 and the surface
energy S over one wave length are given by

( +¢) 1 2
L/ g(h+ )= =2dr = —pgH?. (3.1)
1 pa*l rh ] 0P P
— z/m /_n ZPKE):E) (6) 1dxdy = —HZ(E]k:4 + pg), (3.2)
and

where the velocity potential ®(z,y,t) is given by

iH(EIR + pg) cosh k(h = y) iy
2pw cosh kh

O(z,y,t) = Re { (3.4)

with A = water depth, H = wave height and L = wave length and the modified ice-thickness
term &; = p;d;/p is neglected. It may be noted that the kinetic energy density is equal to the
sum of the surface energy density and the potential energy density. Thus, the total energy
density in case of flexural gravity waves is given by

E=V+T+S= ;HZ(EIkA'Jr,Og). (3.5)

This is similar to the case of capillary gravity waves as discussed in Wehausen and Laitone
(1960). Now, from law of conservation of energy flux, we have

Ec, = constant, (3.6)

where ¢, is the group velocity of the flexural gravity waves. Thus, from (3.6) and (2.3), the
energy relation is obtained as given by

koo tanh kooho(Er Ik + pg)
2 2 _ 2 2 20 201t2 141~10
{Jou? = asa '} = {Jam? — ooy 2 e S P,

(3.7)
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where
- ]{10 sinh leohl (Ez]z/{?go + pg)Ql{?zohz + (5E2]2]€§0 + pg) sinh 2]€20h2

7= kzo sinh 21{320]12 (Elflkilo + pg)2k’loh1 + (5E1]1k3£110 + pg) sinh 21{310]11 .

The energy relation (3.7) can be derived in an alternate manner by applying Green’s second
identity to the velocity potential ¢ and its complex conjugate ¢. Thus, the surface energy
term in the total energy density is justified as the alternate derivation of the energy relation
does not require the definition of wave energy density. In particular, when az = 0 with
[ = 0, the boundary value problem reduces to the flexural gravity wave scattering due to an
abrupt change in water depth (which is also called as a step) and structural inhomogeneity.
In this case the reflection and transmission coefficients K, and K; are defined as

(3.8)

koo tanh kxgh
K, — @, K, — 21 K20 tanh Ko/ 7 (3.9)
a1 ai1kqo tanh kiphs
and the energy relation (3.7) becomes
K2 +yK: =1, (3.10)

with 7 as in (3.8). Using the expansion formulae as in Manam et al. (2006), this scattering
problem is investigated and the above energy relation is used to check the correctness of the
computational results, the details of which will be presented in the Workshop.

4 Wave transformation based on shallow water approx-
imation

In this section, we shall analyze the effect of shoaling and reflection due to an abrupt change
in bottom topography (assuming /[ = 0) in equation (2.1) under the assumption of shallow
water approximation of the linearized theory of flexural gravity waves. Thus, neglecting the
modified ice-thickness term 6; = p;d;/p, the linearized long wave equation in case of flexural
gravity waves is given by (As in Sturova; 2001)

66 ¢j 82 ¢j B wZ

D} 525 T o2 —gTLj%a (4.1)

with D; = E;I;/pg and the shallow water flexural gravity wave dispersion relation is given
by (D}kjy+1)k% = w?/gh;. The phase and the group velocities ¢; and ¢, in case of shallow

water are derived as ¢; = \/( kS +1)ghy, ¢, = njci, ny = (3DkS 4+ 1)/(DikSy + 1).
The general solution form associated with the propagating wave profiles (;(z,t) satisfying

equation (4.1) are given by

H , Hyp .
Gz, t) = %e’l(km“‘“t) + %e“kmx"”t) for x>0,

Gz, t) = @e_i(k”““t) + @ei(kmx_”t) for <0
b 2 2 )

(4.2)

with Hjy,, j,m = 1,2 are the wave heights associated with the individual waves, which
depend on the nature of the physical problem. To demonstrate the wave transformation due
to the abrupt change in water depth, next, we will consider two particular physical problems
as discussed below.
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Case 1: In this case, we will consider the shoaling effect by assuming that there is no
reflection and refraction of the propagating waves due to change in water depth. Thus,
equation (4.2) is satisfied with Hj, = 0 for j = 1,2. Hence, from the principle of conservation
of energy flux as in equation (3.6), the ratio of the transmitted wave height to that of the
incident wave height is obtained as

@ _ {Xlﬁl }1/2 (4 3)
Hy, X232 ’

where x; = pg + 3Ejljk§0, B = \/(pg + Ej]jk;-lo)hj. This is analogous to Green’s law for
gravity waves as discussed in Dean and Dalrymple (1991).

Case 2: In this case, we consider the scattering of shallow water waves due to the change in
water depth assuming waves are partially reflected by the step near x = 0. Here, equation
(4.2) is satisfied for the propagating waves with Hoy = 0. Thus, using the law of conservation
of wave energy flux (3.6) along with the continuity of the surface elevation at x = 0, the
reflection and transmission coefficients K, and K; are obtained as

_ x151 — x20 _ 2x15
Kr — a | O Kt — a4 | A
X151 + X252 X151 + X252

where K, = Hyy/Hy1, K; = Hy /Hyi. Here, it is observed that for hy > hy in the shallow
water approximation, K, — 1 and K; — 2. This case refers to the pure standing waves in
both the regions. On the other hand, the wave height ratio in case of no reflection as in
(4.3) is due to propagation of progressive wave only (see Dean and Dalrymple (1991) for a
comparison with the gravity wave relation). The numerical results will be discussed in detail
during the Workshop.

(4.4)
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