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1. Introduction and statement of the problem

In the paper we shall consider the question of uniqueness in linear problems, which describe inter-

action between an ideal unbounded fluid and bodies located under the free surface of the fluid. In

particular, it can be radiation of waves by forced motion of rigid bodies or diffraction of waves by

fixed bodies. The problems appear within the framework of the surface wave theory under the as-

sumptions that the motion is steady-state, irrotational and the oscillations have small amplitudes.

It is well-known (see, e.g. [3,§ 2.2.1]) that uniqueness for the problems under consideration

is equivalent to non-existence of trapped modes, i.e. unforced localized oscillations of fluid; corre-

sponding velocity potential satisfies the homogeneous problem:

∆u = 0 in W, (1)

∂yu− νu = 0 on F, ∂nu = 0 on S, (2)∫

W

|∇u|2 dx dy + ν

∫

F

|u|2 dx < ∞, (3)
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where∆ = ∂2
x + ∂2

y andx = x in the two-dimensional case,∆ = ∂2
x1

+ ∂2
x2

+ ∂2
y andx = (x1, x2)

in the three-dimensional case; the origin of coordinate system is situated in the free surface and the

fluid in absence of bodies occupiesy 6 0. Besides,W denotes the domain occupied by fluid,S is the

surface of bodies andF is the free surface (see fig. 1). We shall consider the case when the fluid has

infinite depth, but main results of the paper are applicable to the finite depth case too.

It is notable that for the seemingly simple problem very few criteria of uniqueness are known

despite the long history of surface-wave theory. A good review of existing results can be found

in the book [3]. The most universal approach is the method of integral equations: for bodies of

arbitrary shape it guarantees unique solvability of the problem for all values ofν except for a finite

(possibly empty) set of values, which cannot be defined within the scheme. Other approaches (e.g.

the criterion of uniqueness [6]) guarantee absence of eigenvaluesν of the spectral problem (1)–(3) in

some intervals under some restrictions on geometry. We emphasize that existence of trapped modes

for some special classes of bodies has been shown numerically (see [4,7]).

In the paper a new criterion of uniqueness in two- and three-dimensional problems is suggested.

The method is universal: it is applicable for submerged bodies of arbitrary shape and without re-

strictions on the parameterν. The criterion delivers effective procedure for numerical verification

of uniqueness property, so that uniqueness can be established numerically for all values ofν except



vicinities of isolated points, corresponding to trapped modes. The size of the vicinities is defined

within the method and it decays to zero as step of discretization in the suggested approximation

scheme decays to zero.

2. Criterion of uniqueness

We start with the results proved in [3,§ 2.1]. Taking into account that the integral equations considered

there are Fredholm ones, we can formulate the result of [3,§ 2.1.2.3] as follows: both in two- and

three-dimensional cases the problem (1)–(3) is uniquely solvable if and only if the homogeneous

equations

−µ(z) + Tµ(z) = 0, −u(z) + T ∗u(z) = 0, z = (x, y) ∈ S, (4)

have only the trivial solution. Here

(Tµ)(z) = 2

∫

S

µ(ζ) ∂n(z)G(z; ζ) dsζ , (T ∗u)(z) = 2

∫

S

u(ζ)∂n(ζ)G(z; ζ) dsζ , ζ = (ξ, η),

andG is the Green function of the problem satisfying equation∆G = − δζ(z) in the fluid.

It is possible to formulate a uniqueness criterion in the formmin |αi − 1| > δ, whereαi are

eigenvalues of the operatorT (Tµ = αiµ). However, inconvenience of this idea is that the operatorT

is not self-adjoint, which creates essential difficulty in estimating proximity of its eigenvalues to their

numerical approximation.

However, it turns out that a self-adjoint formulation for uniqueness criterion can be found. Since

both equations (4) either have non-trivial solutions or not, action of operatorI − T ∗ from the left to

the first equation (4) does not create new solutions. Thus, it can be shown that the problem (1)–(3)

has a non-trivial solution if and only if a non-trivial solution exists to the equation

−µ + T µ = 0, T = T + T ∗ − T ∗T.

The operatorT is self-adjoint. Besides,〈(I −T ∗)(I −T )v, v〉 = 〈(I −T )v, (I −T )v〉 > 0 (here

〈•, •〉 is the scalar product inL2(S)). Hence,〈T v, v〉 6 〈v, v〉 and all eigenvaluesλi of the operator

T are submitted to the inequalityλi 6 1. Thus,λ1 = 1 indicates existence of trapped modes and

absence of non-trivial solutions to the problem (1)–(3) is equivalent to the condition

λ1 < 1, where λ1 = max{λi}.
For practical application of the criterion an approximation̂T of the operatorT should be used.

Let T̂ be an approximation of the operatorT , then it is convenient to definêT = T̂ + T̂ ∗− T̂ ∗T̂ . It is

easy to find thatT − T̂ = ε + ε∗ − ε∗ε− T̂ ∗ε− ε∗T̂ = ε + ε∗ + ε∗ε− T ∗ε− ε∗T , whereε = T − T̂ .

Hence,

δ = ‖T − T̂ ; L2(S)‖ 6 2‖ε; L2(S)‖(1 + min
{‖T ; L2(S)‖, ‖T̂ ; L2(S)‖})

+ ‖ε; L2(S)‖2. (5)

We denotêλ1 = max{λ̂i}, whereλ̂i are eigenvalues ofT̂ (obviously, λ̂i 6 1). SinceT and T̂

are self-adjoint, theorem 4.10 [2] guarantees thatλ̂1 − λ1 6 δ. Finally, we can formulate sufficient

condition of uniqueness in the form

λ̂1 + δ < 1. (6)



3. Approximation and numerical results

We split the surfaceS into N partsγi and consider the following approximation of the operatorT

(
T̂ µ)(z) =

∫

S

µ(ζ) K̂(z, ζ) dsζ ,

where K̂(z, ζ) =
∑N

i,j=1 χj(z) χi(ζ) |γj|−1
∫

γj
K(z, ζi) dsz; K(z, ζ) = 2 ∂n(z)G(z, ζ); {ζi}N

1 is a set

of points, such thatζi ∈ γi; χi(z) = 0 whenz 6∈ γi andχi(z) = 1 whenz ∈ γi. The approximation

is especially convenient in the two-dimensional case when
∫

γj
K(z, ζi) dsz = H(z′j, ζi) −H(z′′j , ζi),

whereH(z, ζ) is a complex conjugate toG(z, ζ) in z andz′j, z′′j are the end-points ofγj.

The operator̂T can be represented by a matrix. On computing the matrix for a given value ofν,

we can findT̂ , λ̂1 and‖T̂ ; L2(S)‖. Besides, obviously,

∥∥T − T̂ ; L2(S)
∥∥2 6

∫

S

∫

S

∣∣K(z, ζ)− K̂(z, ζ)
∣∣2dsζ dsz, (7)

and computation of the integral leads to an estimate forδ by (5). Then, we can check (6) which is

either satisfied and guarantees uniqueness, or not, and calculations can be repeated with a biggerN .

Let us specify behaviour ofδ in N . Consider the two-dimensional case. LetS ∈ C2, then by

using Ostrowski’s inequality (see, e.g. [5, p. 468]), we find

1

2

∣∣K(z, ζ)− K̂(z, ζ)
∣∣2 6

∣∣K(z, ζ)−K(z, ζi)
∣∣2 +

∣∣∣K(z, ζi)− |γj|−1

∫

γj

K(z, ζi) dsz

∣∣∣
2

6
[ |γj|

4
+

(sz − |γj|/2)2

|γj|
]2

max
γj×γi

|K ′
1|2 +

(
sζ − sζi

)2
max
γj×γi

|K ′
2|2, when z ∈ γj, ζ ∈ γi,

whereK ′
k(z1, z2) = ∂s(zk)K(z1, z2) and natural parametrization is used, so thatsz ∈ (0, |γi|) for

z = z(sz) ∈ γi, sζ ∈ (0, |γj|) for ζ = ζ(sζ) ∈ γj, andζi = ζ(sζi
). We choosesζi

= |γi|/2, and

denoteh = maxi=1,2,...,N{|γi|}, then by (7) and the latter inequality we have

∥∥T − T̂ ; L2(S)
∥∥2 6 h4

6

N∑
i,j=1

[
7

5
max
γj×γi

|K ′
1|2 +max

γj×γi

|K ′
2|2

]
6 h2|S|2

6

[
7

5
max
S×S

|K ′
1|2 +max

S×S
|K ′

2|2
]
. (8)

In the three-dimensional case a similar estimate could be obtained by using the modification of

Ostrowski’s inequality derived in [1].

From the inequalities (5) and (8) it follows thatδ = O(h) ash → 0. If ν 6= νk, whereνk are the

values corresponding to trapped modes, the estimate guarantees that the inequality (6) is fulfilled for

sufficiently smallh (largeN ). The value ofN , which is needed for proving uniqueness, can be quite

modest (see fig. 3), but whenν approachesνk, δ should decay to zero, thenN tends to infinity and

the big values onN demand high precision of calculation. Thus, in principle the procedure allows

us to decrease size of interval, which containsνk, to zero, but practically the process is limited by

possibilities of computer system and by time.

Numerical results obtained with the suggested criterion for the two-dimensional problem are

shown in fig. 2, 3. In fig. 2 we present numerical results for two ellipses with horizontal and ver-

tical axesa andb, respectively; centres are located at a distancel from the linex = 0 and at a depthd.
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Shown is the curvêλ1 for N = 160, b/a = 0.08, d/a = 0.25, l/a = 2.35. For this value ofN com-

puted estimates ofδ are much bigger than1 − λ̂1, and, hence, not shown. For the considered values

of b/a, d/a, l/a existence of a trapped mode was established numerically in [7]. The corresponding

value of parameterνa is marked in fig. 2 by the symbol•.
In fig. 3 comparison with the numerical results on uniqueness, which were obtained in [6], is

given. The value ofδ in fig. 3 is computed by using (5) and (7). The calculations are done for two

circles of a radiusa, whose centres are located at a distancel from the linex = 0 and at a depthd.

Uniqueness ford/a = 2, l/a = 3, νa ∈ (0.5, 1.5) is established by the new criterion withN = 160.

At the same time, criterion of [6] proves uniqueness for valuesνa marked by¤ and fails to prove

uniqueness at points marked by¥.

4. Conclusion

A new approach to uniqueness in linear problems of wave–body interaction is suggested. The criterion

is formulated as an inequality for the maximum eigenvalue of a self-adjoint operator combined from

integral operators. A mathematically justifiable procedure for numerical verification of uniqueness

property is described, numerical results and comparison with [6,7] are presented. Future work can be

directed to finding more effective estimates of the valueδ defined by (5), to considering modifications

of integral equations (4) and to generalizing the results to non-smooth contours.
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[5] M ITRINOVI Ć, D. S., PEČARIĆ, J. E., FINK , A. M. Inequalities for Functions and Their Integrals and Derivatives.
Dordrecht: Kluwer Academic, 1991.

[6] MOTYGIN, O. V., MCIVER, P.A uniqueness criterion for linear problems of wave-body interaction //IMA J. Appl.
Math. 2003. V.68(3). P. 229–250.

[7] PORTER, R. Trapping of water waves by pairs of submerged cylinders //Proc. Roy. Soc. London A. 2002. V.458.
P. 607–624.



Motygin, O.

‘A new approach to uniqueness for linear problems of wave-body inter-

action’

Discusser - N. Kuznetsov:

Have you tried to extend your approach to water of constant, finite depth?

Do you expect the method is applicable to the case when there are protrusions on the horizontal

bottom?

Reply:

I have not tried, but as far as I can judge the extensions you suggest will not lead to any complications

in comparison with the considered case.

Discusser - C.M. Linton:

Is it sufficient to find a single value of the discretization parameter at which λ̂1 + δ < 1? Or do you
need to establish that lim

N→∞
λ̂1 + δ < 1?

Reply:

In order to prove uniqueness it is sufficient to find out that λ̂1(N) + δ(N) < 1 for a single value of
discretization parameter N . And it is guaranteed that for ν 6= νk (νk are values corresponding to

trapped modes) the inequality λ̂1(N) + δ(N) < 1 holds for sufficiently large N .


