
Rapid acceleration of a free-surface
pressure system in forward motion

Nikolay KUZNETSOV

Laboratory for Mathematical Modelling of Wave Phenomena,
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences,

V.O., Bol’shoy pr. 61, St. Petersburg 199178, Russian Federation,
E-mail: nikuz@wave.ipme.ru

1 Introduction; statement of the problem

Our aim is to investigate the effect of a rapid acceleration on the resistance to the rectilinear forward
motion of a surface pressure distribution. The distribution is assumed to start its non-uniform motion
when the free surface is horizontal and water rests over a variable bottom topography and submerged
bodies. A two-scale expansion of a velocity potential allows us to derive an explicit time dependence
for the resistance during the interval of acceleration. Moreover, we find how the resistance depends
on the bottom topography that varies in the direction of motion.

Let an inviscid, incompressible fluid of densityρ (e.g., water) occupy an infinite domainW that
is contained in a horizontal layer of constant, possibly infinite, depthd ∈ (0, +∞] (see Fig. 1, where
a two-dimensional sketch of geometry is shown). Cartesian coordinates(x, y, z) are chosen so that
F = {−∞ < x, z < +∞, y = 0} coincides with the mean free surface, and they-axis is directed
vertically upwards. Along withF , there may be a sea-bedB and a surfaceS, which is the union of the
wetted boundaries of all submerged bounded bodies;B andS are rigid, sufficiently smooth surfaces
and each of them may be empty.

Let the free-surface pressure distribution be given by a smooth functionP(x, z) at the initial
moment of timet = 0. Let P have a compact support; that is,P vanishes outside a bounded two-
dimensional region having the diameterD, andP 6= 0 everywhere inside it. In what follows, it is
convenient to apply dimensionless variables using the same notation for the variables and functions al-
ready introduced. We takeD as the characteristic length,(D/g)1/2 as the characteristic time interval,
andρDg as the characteristic pressure, whereg is the acceleration due to gravity. The characteristic
scales for other functions are generated by these three. We assume that the time dependence of the
pressure distribution is as follows:

p(x, z; t) = P
(
x−

∫ t

0
V(µ) dµ, z

)
for t ≥ 0, (1)

whereV(t) ≥ 0 is the forward velocity. The latter is supposed to be a continuous function oft ≥ 0,
vanishing att = 0 and depending also on a small parameterε in the following way:V(t) = v(t/ε) ≥ 0
andv(µ) → V = const > 0 asµ → ∞. Moreover,Q(µ) = V − v(µ) must decay at infinity so that
µmQ(µ) → 0 asµ →∞ for anym = 1, 2, . . .
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Figure 1: A two-dimensional definition sketch of the geometry.



The linearized theory of the irrotational unsteady water waves caused by the moving pressure
distribution is formulated in terms of a velocity potentialφ(X; t, ε), X = (x, y, z), (see,e.g., [1]).
It is natural to assume thatφ belongs to the class of functions having finite the kinetic and potential
energy: ∫

W
|∇φ|2 dxdydz +

∫

F
η2 dxdz < ∞. (2)

Here∇ = (∂x, ∂y, ∂z) andη denotes the free-surface elevation linked toφ andp by the linearized
kinematic condition on the free surface:

η(x, z; t) = − [∂tφ(x, 0, z; t) + p(x, z; t)] . (3)

For t ≥ 0 the velocity potentialφ must satisfy the following boundary value problem:

∇2φ = 0 in W, ∂2
t φ + ∂yφ = −∂tp on F, ∂nφ = 0 on B ∪ S, (4)

where∂n indicates differentiation with respect to the unit normal directed intoW . Equations (4) must
be complemented by the following two initial conditions:

φ(x, 0, z; 0) = 0, ∂tφ(x, 0, z; 0) = −P(x, z). (5)

The meaning of the second condition (5) follows from (3) and (1) and expresses the fact that the free
surface is horizontal att = 0. According to the first condition (5), equations (4), and condition (2), we
have thatφ(X; 0, ε) vanishes identically inW , which means that there is no initial motion of water.

Our aim is to construct an asymptotic expansion forφ valid asε → 0. In order to understand what
the assumptionε << 1 means, one has to consider a velocityv(µ) that is equal toV identically for
µ ≥ 1, in which case the velocity varies only during the initial time interval that is short in comparison
with the characteristic time interval(D/g)1/2.

2 Asymptotic expansion

The forward velocityv(t/ε) involves the so-called ‘rapid’ timeτ = t/ε, and using this second time
scale along witht, the right-hand-side term in the second equation (4) withp given by (1) can be
written in the form:

−∂tp = v(τ)∂xP (x− V t + εα(τ), z) , where α(τ) =
∫ τ

0
[V − v(µ)] dµ. (6)

In order to apply asymptotic procedure let us expand (6) into a sum of two series in powers ofε so
that each series depends only on a single time scaleτ or t. Thus we arrive at the following expansion
for (6):

−∂tp =
∞∑

m=0

εm

m!

{
βm(τ)∂m+1

x P(x, z) + V [α(∞)]m∂m+1
x P(x− V t, z)

}
,

where
βm(τ) = v(τ) [α(τ)− V τ ]m − V [α(∞)− V τ ]m , m = 0, 1, . . .

It is easy to check that

βm(0) = −V [α(∞)]m and βm(τ) → 0 as τ →∞.

Using a standard asymptotic procedure (see,e.g., [1], ch. 10), one finds the velocity potential as
the two-time scaled asymptotic series

φ(X; t, ε) =
∞∑

m=0

εm [ϕm(X; τ) + ψm(X; t)] . (7)



Hereϕm(X; τ) depends onτ explicitly, namely:
• ϕ0(X; τ) andϕ1(X; τ) vanish identically for0 ≤ τ < +∞ andX ∈ W ;

• ϕm(X; τ) =
[m/2]∑

k=1

umk(X)
1

(2k − 1)!(m− 2k)!

∫ ∞

τ
(µ− τ)2k−1 βm−2k(µ) dµ for m = 2, 3, . . . ,

where[s] denotes the integer part ofs ∈ (−∞, +∞) andumk must be determined from the following
boundary value problem:

∇2umk = 0 in W, ∂numk = 0 on B ∪ S,

umk =

{
∂m−1

x P(x, z) for k = 1,
−∂yum−2,k−1 for k = 2, 3, . . .

on F,

which is uniquely solvable under condition (2).
The functionsψm, m = 0, 1, . . ., must be determined from the following initial-boundary value

problems:

∇2ψm = 0 in W, ∂nψm = 0 on B ∪ S, for t ≥ 0;

∂2
t ψm + ∂yψm = V [α(∞)]m∂m+1

x P(x− V t, z) on F for t ≥ 0;

ψm(x, 0, z; 0) = −ϕm(x, 0, z; 0), m = 0, 1, . . . ;

∂tψ0(x, 0, z; 0) = −P(x, z);

∂tψm(x, 0, z; 0) = −∂τϕm+1(x, 0, z; 0), m = 1, 2, . . . .

If water has constant depth and there are no submerged bodies, then it is possible to integrate
explicitly the sequence of problems forϕm andψm. This can be performed in the same way as in [1],
Section 10.1.3.

To justify the asymptotic formula (7) one has to estimate the remainder term

rN(X; t, ε) = φ(X; t, ε)−
N∑

m=0

εm [ϕm(X; τ) + ψm(X; t)] .

This can be done in the same way as in [1], Chapter 10, and one arrives at the following result.

LetP belongs to the Sobolev spaceHN+2(F ), then‖rN‖1/2 ≤ C(N) εN+1 t ‖P‖N+2, which justifies
the asymptotic formula(7). Here‖ · ‖` denotes the norm inH`(F ).

3 Hydrodynamic corollaries

The asymptotic expansion (7) allows us to obtain two versions of asymptotic formulae for the fol-
lowing hydrodynamic characteristics: (i) the free-surface elevation; (ii) the horizontal component of
the reaction of water to the forward motion of the pressure distribution, this component is referred
to as the resistance. Formulae of the first type are valid on any finite subinterval oft ≥ 0, whereas
formulae of the second type are valid only during the period comparable with the acceleration time,
that is, fort = O(ε).

The zero-order asymptotic formula for the free-surface elevation, valid on any finite subinterval
of t ≥ 0, is as follows:

η(x, z; t, ε) = − [∂tψ0(x, 0, z; t) + P(x− V t, z)] + O(ε).

This formula means that up to a termO(ε) the free-surface elevationη is the same if either the
pressure system instantly starts the forward motion at the limit speedV or the same system approaches



the same speed during a time intervalO(ε). The correction to the above asymptotics is equal to
−ε [∂tψ1(x, 0, z; t) + α(∞)∂xP(x− V t, z)]+O(ε2), where the contributions depending on the rapid
time τ also cancel. This is natural in view of the assumption that the acceleration time scaleε is short
in comparison with the gravitational time scale(D/g)1/2.

Further asymptotic analysis of the free-surface elevation leads to the following formula:

η(x, z; t, ε) =
t2

2
∂yU(x, 0, z) + O

(
ε3

)
for t = O(ε). (8)

HereU must be determined from the following boundary value problem:

∇2U = 0 in W, ∂nU = 0 on B ∪ S, U = P(x, z) on F. (9)

Presumably, the similar dependence on time in (8) and in the falling body law is caused by the role
of gravity in generating water waves. A consequence of formula (8) and the maximum principle for
harmonic functions is that the point on the horizontal free surface, subjected to the maximum pressure
at the initial moment, moves upwards after being released from the action of the pressure because of
its forward motion.

Let us turn to the resistance which is equal toR(t, ε) =
∫
y=η(x,z;t) p nx dσ. Herenx is thex-

component of the unit normal toy = η(x, z; t) anddσ denotes the element of surface area. Using (3)
and the fact thatp is given by (1), we obtain another representation:

R(t, ε) =
∫

∂tφ(x, 0, z; t, ε) ∂xP
(
x−

∫ t

0
v(µ/ε) dµ, z

)
dxdz, (10)

where we integrate over the support ofP. The principal term in the asymptotics ofR(t, ε) (it is
valid on any finite time interval) arises when one changesφ and the integral over(0, t) to ψ0 andV t,
respectively, in (10).

For the initial interval, the asymptotics of resistance is given by the following formula:

R(t, ε) =
t2

4

∫

B∪S
|∇U |2nx dσ + O

(
ε3

)
for t = O(ε). (11)

An advantage of this formula is the dependence on the geometry ofW through the solutionU of a
time-independent boundary value problem(9), which allows us to make qualitative conclusions for
particular geometries.

Let S = ∅ and letB be a cylindrical surface having its generators parallel to thez-axis, that is,
B = {−∞ < x, z < +∞, y = −H(x)}, whereH(x) > 0. If H is monotone, thennx has a
fixed sign onB: nx ≥ 0 (nx ≤ 0) when−H decreases (increases). Therefore,when the pressure
distribution accelerates down (up) the bottom slope, the principal term in the asymptotic formula
(11) is positive (negative).If S = ∅ andB is horizontal, then the principal term in (11) vanishes.
However, the third-order term can be found explicitly in this case and this term is negative. Thus
during the rapid acceleration of the surface pressure the resistance can act in the direction opposite to
the direction of motion as well as in the same direction. Earlier, a similar effect has been discovered
in the paper [2] concerned with the problem of the wave-making resistance for a submerged body
moving forward so that its velocity oscillates at a high frequency about a mean value.
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‘Rapid acceleration of a free-surface pressure’

Discusser - T. Miloh:

Are your results valid only for ‘rapid’ acceleration? What happens if your pressure acceleration is

‘moderate’ or even slow?

You made a special point of the fact that the free-surface elevation is proportional at small-time to t?
Since we know that both η and ηt are zero for t→ 0 is it not obvious that η ∼ t2 for t→ 0?

Reply:

There is a problem closely related to the problem of ‘rapid’ acceleration and this related problem is

considered in detail in ch. 10 of ‘Lineaer Water Waves: a Mathematical Approach’ by N. Kuznetsov,

V. Maz’ya, B. Vainberg, CUP 2002.

For that second problem numerical computations were produced for a particular case for which the

explicity solution does exist. There is a good agreement between the exact and asymptotic solutions

when ε is as large as 10.

Of course, the proportionality of η to t2 is a rather simple fact, but the coefficient depending on (x, z)
is also obtained in the presented approach.

Discusser - D.H. Peregrine:

Please explain how in the expression for φm at the top of p. 99 the

∫ ∞
τ
satisfies causality.

Reply:

The integral

∫ ∞
τ

=
∫ 1

τ
because α(τ) ≡ α(1) for τ ≥ 1 according to the definition of ν(µ), and so

βm(τ) ≡ 0 for τ ≥ 1 and m = 0, 1, . . .. Hence the integral under consideration is NOT related to
causality. The latter is buried in ψm, m = 0, 1, . . ., that depends on the ‘usual’ time t.


