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1. Introduction

Linton and Mclver (LM)(1995) developed the gen-
eral theory for two-dimensional wave motion in a two-
layer fluid in which the lower fluid extends infinitely
downwards while the upper fluid has a free surface.
They also considered interaction of waves with a hor-
izontal cylinder submerged in either of the two layers.
This problem arose from modelling an underwater pipe
bridge across Norwegian fjords consisting of a layer of
fresh water on the top of a deep layer of salt water.
Linton and Cadby (LC) (2002) extended the work of
LM to oblique scattering. During winter the fjords are
covered by ice, and this has motivated us to extend the
problem of LC to an ice-covered two-layer fluid wherein
the ice-cover is modelled as a thin elastic plate. The
reflection and transmission coefficients for oblique scat-
tering by a horizontal circular cylinder submerged in
the lower fluid are obtained and depicted graphically
against the wave number for various values of the angle
of incidence in a number of figures. It is noted that for
normal incidence, the reflection coefficients are identi-
cally zero.

2. Mathematical formulation

A cartesian co-ordinate system is chosen in which
the y-axis points vertically upwards with y = 0 as the
mean interface and y = h > 0 as the mean position of
ice-cover. For oblique waves the velocity potential has
the form ®(z,y,2,t) = Re{¢(z,y)e~+¥7*}. The po-
tential functions ¢! and ¢!! in the upper and lower lay-
ers respectively satisfy the modified Helmholtz equa-
tion

(V2 =%l =0, in appropriate layers. (2.1)

The linearized boundary conditions at the interface are
o = o}
s(o) — Ko') = ¢l = K¢'" on y=0 = (23)

where s = z—;(< 1), p1 being the density of the upper
layer while po that of the lower fluid, and at the ice-
cover, is

on y=0, (2.2)

62
{D(@—f)%l—ef(}qﬁ;—mf =0ony=h, (24)
where K = "72, D is the flexural rigidity of the material
of ice-cover in the usual notation, and

Voll -0 as y — —oo. (2.5)

In a two-layer fluid progressive waves have the form
(except for multiplicative constant)

1
2

¢ = eFr D (1 (B)eh + Vo(k)e ™), (2.6)
o'l = eFeW =2 by (v (1) — Va(k)),  (27)

where k satisfies the dispersion relation
G(k) = Va(k) + Vi(k) = 0, (2.8)

where Vi(k),Va(k) = (U(k) £ K)eF*r Vi(k)
—(k(1 —s) — K) (U(k)sinh kh — K cosh kh), Vi(k)
Ks(U(k)coshkh — K sinhkh), U(k) = k(DE* + 1 —
eK). This dispersion equation has exactly two positive
real roots A; and Ay (A; < A2), say.

For the case k = \j(j = 1,2) progressive waves are
thus of the form

¢! =eFFiTg;(y),

(A3 =72, = (1,2)(8; = A; for v = 0)

¢II — eiiﬁjm-l—)\jy, (29)

where 3; =
and

{/\](1 - S) — K} (V1 (/\j)e)‘fy + VQ(/\j)e_Ajy)
Va(X) '

9;(y) =

(2.10)
In any wave scattering problem therefore, the far-field
will take the form of incoming and outgoing waves at
each of the wave numbers \;(j = 1,2). It is given by

¢I,II ~ (Aj:ezl:iﬁlz + C:I:eqiiﬁlz) (91(y),6’\1y)

+ (Bﬂ:ezl:iﬁzz + Dj:e:Fiﬁgz) (gQ(y),e)‘”") ,

as £ — too, for which in the notation of LM

(2.11)

¢~ (A",B,C",D ;A*,B*,C*,D").

An incident plane wave ¢;,. of wave number A; has
the form

I _ Jilizcosa

1 — iA1T cos a+A1y
mnc '

g (y), ol . =e (2.12)
In this case v = A\;sina, B = A\ cosa, B = (A3 —
A2 sin® a)%. We know that 5 is real since Ay > A1 and
thus waves of wave number Ay will exist for all values
of A\ and a.

An incident plane wave of wave number A; is given
by

I iAo T COS ¢

1 —e 11 iA2T COS A2y
mnc — )

92(Y), bip =€ (2.13)



In this case v = Assina, f; = (A2 — Msina)?,
B2 = Ascosa. For a given angle a there may be a
value of K for which A\ = Ay sina and thus g; = 0.
This value of K is called cut-off frequency and de-
noted by K. in the notation of LC. For some values
of K for which A\; < Agsina (for fixed a) 1 becomes
imaginary and in that case there exists no propagat-
ing wave of wave number ;. Fig.1 shows the cut-
off frequency K.a, plotted against incident wave angle
a =sin"'(A\;/X2), for s = 0.5, h/a =2, ¢/a =0.01,a
being the radius of the submerged cylinder of §3. The
different curves correspond to D/a* = 2,1.5,1,0.5,0.1.
It is observed from this figure that for any angle « sit-
uated on the right side of the curve there are no prop-
agating waves of wave number A; for any frequency. It
may be noted that for very small a% and £ the K.a
curve has almost the same features of the curve given
in fig.1 of LC.

3. Cylinder in the lower fluid

Let a horizontal circular cylinder of radius a have
its axis at y = f(< 0), and polar coordinates (r,6) be
defined in the (z,y)-plane by z = rsinf and y =
f — rcosf. Symmetric and antisymmetric multipoles
¢S (>0) and ¢2 (> 1) respectively are defined by (in
the notation of LC)

Is _ (_1\n -
o = (0 f e (4

k)e" + B(k)e™"") dk,

(3.1)

M = K, (yr) cosnf + ( ]L 0.(k )e'Vdk,
(3.2)

Pl = (—1)”*1][0092(@ (A(k)e" + B(k)e ") dk,

’ (3.3)
pra = K, (yr) sinnb + ( "'H][ O (k )e"dk,
(3.4)
where O(k) = coshnkcos(yzsinhk), Oy(k) =

sinh nk sin(yx sinh k), v = vy cosh k and

A(k), B(k) = (KVi(v), KVa(v)) e*f /G(v),  (3.5)

C(k) = (Va(v) + Va(v)) ! /G (v).

The path of integration in the integrals in (3.1) to
(3.4) is indented below the poles at k = p;, where
yecosh u; = Aj,j = 1,2. The far-field form of the mul-
tipoles are given by

(3.6)

qﬁ{fs ~ (=1)"mi (C"“ cosh nuleﬂﬁl“H‘W

+C*"2 coshnpupe®iP2mtA2v) (3.7)
¢L1 ~ F(=1)"m (C*' sinh npy eFPre+r1y

+C"2 sinh nppetif2etA2y) (3.8)

as ¢ — Foo. Here C* is the residue of C'(k) at k =
pj(j = 1,2) given by

CHi = (Va(\;) + Va())) eNT/B,G (). (3.9)

Using the well-known result
-y L,
9 m

m=0

g3 X(T+T~ (T™ +T7™) Iy(X), (3.10)

where g = 1,¢,, = 2,m > 1 and I, (X) is the modified
Bessel function of first kind, (3.2) and (3.4) can be
expanded in terms of polar co-ordinates as

¢£IS = K, (yr) cosné + Z A I (yr) cosmd,
m=0
(3.11)
oM = K, (yr) sinnf+ Z Al [ (yr) sinmf, (3.12)
m=1
where
Aﬁf,)n = em(—l)’”m]ﬁ el coshmk coshnkC (k)dk
0
(3.13)
A%“,L = 2(—1)”*’”% "/ sinh mk sinh nkC(k)dk
0
(3.14)

Incident wave number Ay

Let us consider the case of an incident plane wave of
wave number A\; making an angle a with the positive 2-
axis, so that v = A; sina. The incident wave potential
(2.12) has the form

o
7 _ >\1f§ _
inc — € em(
m=0

—i sinh mv sin m@)

I (yr) (cosh my cosmé

(3.15)

where coshv = A1 /v = 1/ sina. We write the resulting
velocity potential as

¢/\1 = (binc + Z (an(bral + bn¢%) )

n=0

(3.16)

where a,, and b,, are unknown coefficients. To solve for
ap, and b, we substitute (3.11),(3.12) and (3.15) into
(3.16) and apply the body boundary condition 3?;1 =
0 on r = a. We obtain two infinite systems of linear

equations for these unknowns as given by

+ZA

—1)meMS sinhmy, m=1,2,-

(3.17)

—1)™ e, M coshmy, m =0,1, -

—+ZA

(3.18)



where Z,, = I}, (yr)/K,,(yr). The far-field form for
@, , in the lower fluid layer, can be written as

eiBre+ry + Rhe—iﬁlw+>\1y + 7y, e~ B2zt A2y

II as r — —0oQ,
¢>\1 ~ Tkleiﬁlm-i_)\ly + t>\1€i’82m+>‘2y
as & — 00,

(3.19)
where Ry,,ry, are the reflection coefficients for re-
flected waves of wave numbers A\; and A respectively
due to an incident wave of wave number \;, and sim-
ilarly for transmission coefficients T, and ty,. Using
(3.16), (3.7), (3.8) the reflection and transmission co-
efficients are obtained as

[ee]
Ry,,ma, = 7CH2 Y (=1)" Py, (3.20)
m=0
[ee]
Ty, = 1,ty, = 7C"2 Y " (=1)"Q1 5, (3.21)
m=0

where P 5, Q1,2 = iby, coshmypy 2 £ ap, sinhmypy .

Incident wave number Ao

We consider the case of an incident plane wave of
wave number As. The expression of incident wave po-
tential is the same as (3.15), except that A is replaced
by A2. The velocity potential ¢y, for this problem can
again be expanded in multipoles similar to (3.16) and
the equations for a, and b,, are similar to (3.17) and
(3.18) with A; replaced by As. Using the far-field forms
of the multipoles given by (3.7) and (3.8) in ¢,, we
find that the expressions for reflection coefficients R,
and ry, are similar to (3.20) with appropriate changes,
and the transmission coefficients are given by

oo

T)‘l,t,\1 —-1= ’/TC”“'2 Z (_l)le’Q.

m=0

(3.22)

For the cylinder in the upper layer, the expressions
for reflection and transmission coefficients have also
been obtained but are not presented here.

3. Discussion

In figures 2-5 the reflection and transmission coef-
ficients are shown for the case of wave of wave num-
ber \; incident on the cylinder in the lower fluid for
£ =001,% =25=05%=-225 =15 Fom
figures 2 and 4 it is observed that as the angle of inci-
dence increases, |Ry, | increases while |T},| decreases.
Also |Ry,| is somewhat small in comparison to that
of LC and |T},| is somewhat large in comparison to
that of LC. |ry, | and |ty,| of the waves of wave num-
ber Ay, shown in figures 3 and 5, are small in com-
parison to those of A\;. The case of an incident wave
of wave number As is more interesting due to the pres-
ence of cut-off frequency. For this case, figures 6-9 show
[Rxs s |7asls | Thsls |Er,| against Ka. When o = 0.335,
which is greater than the critical angle a = 0.3307

for the given values of the different parameter, there
are no waves of wave number A; propagating in the
fluid. From fig.1 we have the following cut-off frequen-
cies: K.a = 0.07;(0.09,0.86); (0.13,0.665); (0.17,0.54)
corresponding to the incident angles 0.24, 0.26, 0.29,
0.31 respectively. For a = 0.24, only for frequencies
greater than the cut-off frequency will there be conver-
sion of wave from one mode to the other but for other
angles, only for frequencies lying between two cut-off
frequencies will there be energy conversion.
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Fig.1: Cut-off frequency K .a due to an incident
wave of wave number A,: (Wa=2, s=0.5)
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fig.2: Reflection coefficient due to a wave of
wavenumber A, incident on a cylinder in the lower
layer: (Dia*=1.5, e=.01, hia=2, s=.5, fla=-2)
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fig.3:Reflection coefficient due to a wave of
wavenumber A, incident on acylinder in the lower
layer; (D/a‘=1.5, ela=.01, s=.5, Wa=2, fla=-2)
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Fig.7: Reflection coefficient due to awave of
wave number A, incident on a cylinder in the lower
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fig.4: Transmission coefficient due to awave of laver: (D/a=15. &/2=0.01. Wam2. s=0.5. flae-2)

wavenumber A, incident on a cylinder in the lower
layer; (D/a'=15, e/a=.01, hla=2, s=.5, fla=-2)
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Fig.8: Transmission coé% cient due to awave of
wavenumber A, incident on a cylinder in the lower

layer;(D/a’=1.5, £/a=0.01,5=0.5, Wa=2, f/a=-2)
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fig.5: Transmission coefficient due to a wave of
wavenumber A, incident on a cylinder in the lower 0.995 F
layer;(D/a'=15, g/a=.01, s=.5, Wa=2, f/a=-2)
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N Acknowledgement
0 ‘ ‘ ‘

This work is partially supported by CSIR, New
Delhi.

Ka References
Fig.6: Reflection coefficient due to awave of
wavenumber A, incident on acylinder in the lower 1. Linton,C. M. and Mclver, M., J. Fluid Mech. 304,
layer;(D/a’=1.5, &/a=0.01, h/a=2, s=0.5, f/a=-2)

(1995) 213-229.

2. Linton, C. M. and Cadby, J. R.,J. Fluid Mech.
461,(2002) 343-364.



