
Potential Flow below the Capillary Surfae of a Visous FluidX.B. Chen�, D.Q. Lu��, W.Y. Duan��� & A.T. Chwang���Researh Department, BV, 92077 Paris La D�efense (Frane)Email: xiao-bo.hen�bureauveritas.om��Department of Mehanial Engineering, HKU, Hong Kong (China)���College of Shipbuilding Engineering, HEU, 150001 Harbin (China)The potential ow in a visous uid due to a point impulsive fore applying at the free surfae is on-sidered within the framework of linear Stokes equations. The ombined e�et of uid visosity and surfaetension on the potential funtion below the water surfae is studied. Dependent on the wavenumbers assoi-ated with the level of the e�et due to surfae tension, the osillations an be grouped as gravity-dominantwaves and apillary-dominant waves. It is shown that the wave form of gravity-dominant osillations islargely modi�ed by the surfae tension while the wave amplitude of apillary-dominant osillations is mostlyredued by the uid visosity.1. Stokes equationWe onsider the lower half-spae �lled with water limited on the top by the water-air interfae. A Cartesianoordinate system is de�ned by plaing the (x; y)-plane oinided with the undisturbed free surfae andthe z-axis oriented positively upward. In this gravity-dominant uid domain, the referene length L, theaeleration of gravity g and the water density � are used to de�ne the nondimensional oordinates x =(x; y; z), the time t, the uid veloity u = (u; v; w), the veloity potential �, the dynami pressure Pand fores F with respet to (L;pg=L;pgL;pgL3; �gL; �gL3), respetively. We study the ow due to apoint impulsive fore F applied vertially downward at the origin of oordinate system. By assuming theinompressibility, the uid ow is governed by the ontinuity equation and the momentum equation :r � u = 0 and ut = �rP + �r2u� ezFÆ(x)Æ(t) (1a)where � = �=(�pgL3) with � the uid visosity. The term �ezFÆ(x) represents the singular fore loatedat the origin where ez is the unit vetor in the z diretion, Æ(�) is the Dira delta funtion.On the free surfae z = �(x; y; t), the boundary onditions are linearized by assuming small waveamplitudes and written on the undisturbed free surfae z = 0 :�t = w (2a)as the kinemati ondition stating no uid partiles ross the free surfae and�(uz + wx) = 0 = �(vz + wy) (2b)� � �2(�xx + �yy) + 2�wz = P (2)as the dynami onditions representing the vanishing of shear stress in both x and y diretions (2b) and theequation of normal stress (2). In (2), � =pT=(�gL2) with T is the surfae tension of water-air interfae.In addition, the initial values of the veloity, the hydrodynami pressure and the free-surfae elevationare taken as those of the quiesent uid, i.e.u = P = � = 0 at t = 0 (3)The equations (1-3) onstrut an initial-boundary-value problem.2. Solution of the initial-boundary-value problemTo solve the initial-boundary-value problem preeding de�ned (1-3), the unknowns (u; P ) are deomposedas the sum of an unbounded singular Stokes ow (uS ; PS) and the regular ow (uR; PR) whih representsthe free-surfae e�et. Furthermore, the ontinuous vetor uR is written as the sum of an irrotational anda solenoidal vetors : uR = r� + uT (4)suh that r2� = 0 = r � uT and uTt = �r2uT (5)



where the salar funtion �(x; t) represents the irrotational ow while uT the rotational ow. The dynamipressure PR is de�ned by : PR = ��t + f(t) (6)where the funtion f(t) is introdued to satisfy the initial ondition P = PR + PS = 0 at t = 0 sine�0 = �(t = 0) may not be neessary zero. Indeed, we have used f(t) = ��0Æ(t) diretly in the following forthe sake of simpliity.The boundary onditions (2) an now be expressed in terms of (uS ; PS;�;uT ) on the undisturbed freesurfae (z = 0) : �t � (�z + wT ) = wS (7a)2�zx + uTz + wTx = �(uSz + wSx ) (7b)2�zy + vTz + wTy = �(vSz + wSy ) (7)�t + � � �2(�xx + �yy) + 2�(�zz + wTz ) = PS � 2�wSz � �00Æ(t) (7d)in whih �00 = �(x; y; z = 0; t = 0). The unbounded singular ow on the right hand side of (7) is well knownin the work of Lu & Chwang (2004) and satis�es :PS = F=(4�) �z(1=jxj)Æ(t) (8a)uSt � �r2uS = �F=(4�)�(�zx; �zy;��xx��yy)(1=jxj)�Æ(t) (8b)whih yield the solutions in integral forms for (uS ; PS) by taking the Laplae transform with respet to tand the Fourier integral with respet to (x; y). In the same way, we introdue the joint integral transformfor (�;�;uT ) as : [~�; ~�; ~uT ℄ = Z 10dt Z 1�1dy Z 1�1dx [�;�0ekz ;uT0 ek�z℄e�i(�x+�y)�st (9)in whih, we have used the notations :�0 = �(x; y; z=0; t) ; uT0 = uT (x; y; z=0; t) ; k=p�2+�2 and k�=ps=�+ k2Taking the joint integral transform (9) over the left hand side of (7) as well as r � uT =0, and introduingthe integral form of (PS ;uS) on the right hand side of (7), a system of linear equations is obtained for the�ve unknowns :0BB� s �k 0 0 �10 2ik� k� 0 i�0 2ik� 0 k� i�1 + �2k2 s+ 2�k2 0 0 2�k�0 0 i� i� k� 1CCA0BBB� ~�~�0~uT0~vT0~wT0 1CCCA = � F2s 0BBB� k(1�k=k�)i�k�(1�k=k�)2i�k�(1�k=k�)2s0 1CCCA (10)whih gives :~�0 = �F2 �ND � 1s� with N = 2(s+ 2�k2) and D = !2 + (s+ 2�k2)2 � 4�2k3k� (11)In (11), D is often alled the dispersion funtion and !2 = k+�2k3. Similar results for (~�0; ~uT0 ; ~vT0 ; ~wT0 ) withthe same dispersion funtion D in denominator an be obtained. The wave elevation � has been onsideredin a number of studies as in Miles (1957) and in Lu & Chwang (2003). Sine the amplitude funtions of(~uT0 ; ~vT0 ; ~wT0 ) are of order (�1=2; �1=2; �), respetively, we are interested here to the potential funtion � whihis obtained by taking the inverse integral transform :� = � F16�3i Z +i1�i1ds Z 1�1d�Z 1�1d� (N=D � 1=s)ekz+i(�x+�y)+st (12)where N and D are given in (11) and  is the Laplae onvergene absissa in the Bromwih integral for theinversion of Laplae transform.3. Evaluation of the potential funtionTo evaluate the potential funtion �(x; t), we examine the equation D = 0 whih gives two poles of theLaplae integral : s� = �i! � 2�k2 +O(�3=2) (13)



By taking a ontour integration in the omplex s plane using the Cauhy residue theorem, we obtain :�(x; y; z; t) = � F8�2 Z 1�1d�Z 1�1d� �2e�2�k2t os(!t)� 1�ekz+i(�x+�y) +O(�) (14)whih an be further written by introduing the Bessel funtion J0(�) of the �rst kind :�(h; z; t) = �F=(4�) Z 10 dk k�2e�2�k2t os(!t)� 1�ekzJ0(kh) +O(�) (15)in whih h =px2 + y2. The derivative of � with respet to t is diretly derived from (15) and written as�t(h; z; t) = F=(2�) Z 10 dk e�2�k2tk ! sin(!�) ekzJ0(kh) +O(�) (16)Following the work by Chen & Duan (2003) in whih a potential funtion similar to (16) but in an invisiduid was analyzed, there are two saddle points kg and kT assoiated with the phase funtion  = ! � ka ofthe osillatory part of the integrand in (16) :kg = 1=(4a2) +O(�=a2) and kT = 4a2=(9�2) +O(�=a2) for a� p� (17)where a = h=t is the wave veloity. When a is of the same order as p�, the wavenumbers kg and kT beomelose and in partiular, kg = kT = k0 � 0:393=� for a = a0 � 1:086p�. When a < a0, the wavenumbers kgand kT are omplex. This analysis shows that there are two waves propagating at the same speed a : one isgravity-dominant wave with a lower wavenumber kg (17) and another apillary-dominant wave with a muhlarger wavenumber kT (17). There is also a minimum speed a0 below whih two waves beome evanesent.Unlike the invisid potential funtion in Chen & Duan (2003), the fator e�2�k2t is present in theintegrand of (16). This exponentially-dereasing funtion redues the amplitude of �t at large time and forwaves of large wavenumbers. The apillary-dominant waves are then heavy damped by the visous e�etwhile gravity-dominant waves are muh less a�eted at small values of time.To on�rm above analysis, we have performed the numerial omputation of (16) in the omplex k-planeby using the steepest desent algorithm. The �gures on the next page illustrate �t for F=(�2z�) = 1 andz = �1=1000 at a �xed t = 10 and h varying from 0 to 8/5.4. Disussions and onlusionsThe potential funtion �t de�ned by (16) with the uid visosity but without taking aount of the e�etof surfae tension is shown on Figure 1. Large waves with small wavelength are present at a region of smalldistane from the singularity. Due to the visous e�et and the immersion z = �1=1000, the wave amplitudeof larger wavenumbers lose to the singularity is redued to zero. This is onsistent with that the transientpure-gravity waves on the free surfae at a given instant osillate with inreasing amplitude and dereasingwavelength when we approah to the impulsive fore point, as stated in Lamb (1932). Furthermore, theamplitude of pure-gravity waves inreases linearly with time in a rate of order O(t=h2) and wavenumberinreases in an order of O[t=(4h2)℄. This peuliar property of pure-gravity potential hinders the numerialdevelopment to solve the boundary-value problem assoiated with a oating body in whih the spae integralover body's surfae as well as the time-onvolution integral are diÆult to be aurate.Taking into aount of the e�et of surfae tension, the wave form hanges, in partiular, there is notwave at all at small distane when h=t < a0. On the other side, at larger distane from the impulsive point,the apillary-dominant waves have very large amplitudes with wavenumbers proportional to 4h2=(9t2�2) asshown on Figure 2. These large and short waves of apillarity are fortunately heavy damped by the visouse�et as shown on Figure 3.In pratie, the most interesting are the gravity-dominant waves. Their properties of the potentialfuntion with the ombine e�et of surfae tension and uid visosity are welome and believed to be muhuseful in the numerial solution of wave-body problems.Referenes[1℄ Miles J.W. (1968) The Cauhy-Poisson problem for a visous liquid. J. Fluid Meh. 34, 359-70.[2℄ Lu D.Q. & Chwang A.T. (2004) Free-surfae waves due to an unsteady stokeslet in a visous uidof in�nite depth. Pro. 6th ICHD, 611-17.[3℄ Chen X.B. & Duan W.Y. (2003) Capillary-garvity waves due to an impulsive disturbane. Pro. 18thIntl Workshop on Water Waves and Floating Bodies, Carry-Le-Rouet (Frane).[4℄ Lamb H. (1932) Hydrodynamis. 6th Ed. Dover Publiations, New York.
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 1: Potential funtion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtainedby taking only aount of the uid visosity (� = 3:193e-7) but without the surfae tension (� = 0).
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 2: Gravity-dominant waves (solid line) and apillary-dominant waves (dashed line) of potential fun-tion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtained by taking aount ofsurfae tension (�=2.713e-3) but without the uid visosity (� = 0).
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6Figure 3: Gravity-dominant waves (solid line) and apillary-dominant waves (dashed line) of potential fun-tion �t(h; z; t) at z = �1=1000 and t = 10 against h varying from 0 to 8/5, obtained by taking aount ofboth the surfae tension (�=2.713e-3) and the uid visosity (�=3.193e-7).


