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Introduction 
In order to avoid possible numerical problems associated with rapid transients when a 
wavemaker is started from rest, it is not unusual to multiply the early stage of the wavemaker 
input signal by a starting ramp function.  The aim of the present work is to investigate the 
effects of such ramp functions, particularly in the region of the wavefront.  They have 
implications concerning the effects of reflections by structures, walls or beaches, and in 
relation to the initial direction of motion of floating or submerged untethered bodies when 
they undergo non-linear responses to an incoming wave front (e.g. in which direction do they 
initially drift?) 
 
A study of the non-linear behaviour of the leading waves was given by Clamond & Grue 
(2000). The preliminary study described here is largely based on classical linear analysis, 
complemented by some results from fully non-linear simulations using a boundary element 
code.  The linear analysis follows the approach described by Joo et al (1990), though their 
formulation also allows for surface tension which is ignored here. 
 
Derivation of the free surface elevation 
We consider long-crested waves generated by a piston wave-maker, driven with a velocity 
u(t).  The depth of the tank and gravitational acceleration are taken to be unity.  The classical 
linear boundary conditions are invoked on the free surface, and the tank is initially considered 
to be infinitely long.  Following Joo et al, we write the velocity potential as the sum of an 
impulsive term and a memory term: the former satisfies the boundary conditions on the 
wavemaker and the bottom of the tank, and a Dirichlet condition on the free surface; and the 
latter is a correction such that the total solution satisfies the free surface condition.  Thus we 
have 
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φ  is a simple series, and  is written as a Fourier cosine integral *φ
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The origin of coordinates is at the intersection of the wave maker and the mean free surface.  
Substitution of equation (2) into the free surface conditions leads to 
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The general solution of (3) is 
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where = k tanh k and u2β p is the particular integral satisfying: 
).(2 tuuu pptt =+ β        (5) 

We now impose initial conditions A(0) = At(0) = 0, and after some algebra obtain a solution 
for the free surface elevation: 
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As discussed by Joo et al, the contribution from the impulsive term φ  is cancelled by a 
singular term arising in the expression for . *φ
 
Elevations with and without ramp functions 
Joo et al give the result for an unramped sinusoidal piston wavemaker with imposed 
horizontal velocity ttu ωsin)( = , namely 
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We consider here three ramp functions, one of which tends to unity asymptotically as ∞→t ; 
and the others increase to unity during one cycle )/2( ωπ=T .  The second ramp provides 
continuity at with the subsequent sinusoidal velocity signal and its first two derivatives; 
while the third ramp leads to a discontinuity in acceleration at 

Tt =
Tt = . 

 
Ramp 1 
The piston velocity is defined by 

 .          (8) sin)1()( tetu t ωγω−−=
The resulting wave elevation is (for t>T): 
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Ramp 2 
The piston velocity is defined by 
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where Tt /=τ .  It may be verified that .  The 
corresponding wave elevation can be written as two expressions valid for 
respectively, after solving equation (3) with appropriate initial conditions in each case. 
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Ramp 3 
The piston displacement has a cosine ramp function applied over the first cycle: 
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The resulting wave elevation may be written (for t>T):  
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where ω1= ω, ω2= ω/2, ω3= 3ω/2 and a1=1/2, a2=-1/8, a3=-3/8, and η0 is given in eq. (7). 
 
It is straightforward also to obtain expressions for the propagating disturbances due to one or 
a few cycles of sinusoidal wavemaker motion, or one “cycle” of ramps 2 or 3 with 

.  The results can be compared in various regions with the stationary phase 
approximation (the trailing waves), the Airy approximation (near the front) and the Fresnel 
envelope (at the front) – as described, for example, by Mei (1983, pages 26, 30 and 55 
respectively).  Here we restrict our attention to the continuously oscillating wavemaker, with 
and without a ramp. 
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Reflected waves 
It is instructive to consider reflection by a vertical wall at the end of a tank.  Dissipation by a 
beach can be considered subsequently.  For a tank of length L, the incident plus reflected 
wave is simply 
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Results 
The following are for 1=ω .  Figure 1 shows time histories of the wave at (a): x = 0; and (b): 
x = 10, for the pure sinusoidal wavemaker, and two ramped inputs. To yield unit steady state 
amplitudes, the elevations are scaled by cg k0 /tanh k0, where cg and k0 are the group velocity 
and wavenumber corresponding to a finite water-depth wave of frequency ω. In the case of 
ramp 1, results are obtained here for 2.0=γ . Figures 2a – 2c show the wave profiles for these 
3 cases at t = 99, and figures 2d – 2f the equivalent results at 100=t .  Results are given for 
both an infinitely long tank, and one of length L = 60. The incident, reflected and total waves 
are shown separately. Figure 3 shows wave profiles corresponding to ramp3, and compares 
the results from the linear theory (eq. (12)) with those from a nonlinear quadratic Boundary 
Element (BE) analysis, calculated with a cosine ramp (ramp3) for two piston amplitudes: 0.01 
and 0.043.  Profiles at t=7T and t=15T are given in figures 3a and 3b respectively, for a tank 
of length 14. For the BE simulations, a numerical beach is operational over one wavelength at 
the right hand end of the tank. The elevations are scaled by the piston amplitude in these latter 
figures. Further results, including the implications of ramp functions on wave diffraction by a 
circular cylinder, will be discussed in the presentation. 
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Figure 1. Time histories of elevation: a) x=0; b) x=10 
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Figure 2. Wave profiles, and reflections, for sinusoidal input ((a) and (b));  
ramp1 ((c) and (d));  ramp2 ((e) and (f)). Left figures: t=99; right figures: t=100 
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Figure 3. Wave profiles from linear theory and BE calculations: a) t=7T; b) t=15T 
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