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Abstract

Wings with circular planforms are not common in aeronautics, although
there are disc-like projectiles with sporting and recreational applications.
There are some semi-analytic approaches in the literature (including by Miloh)
to solution for the flow over thin circular lifting surfaces, which yield exact or
nearly exact results for flat discs at small angle of attack. These solutions are
reviewed and compared with direct numerical solutions of the lifting surface
integral equation. Solutions for non-flat discs with small twist or camber are
also discussed, including choice of twist or camber to minimise induced drag,
or to achieve a favourable placement of the centre of pressure. Axisymmetri-
cally cambered discs at zero angle of attack are paid special attention.

Introduction

The loading ∆p(x, y) on a thin lifting surface z = f(x, y) with a planform B in an
x-directed stream U satisfies the lifting surface integral equation (LSIE)∫ ∫

B
∆p(ξ, η)W (x− ξ, y − η)dξdη = 4πρU2fx(x, y)

where

W (x, y) =
1

y2

[
1 +

x√
x2 + y2

]
is the downwash induced by a unit horse-shoe vortex at the origin. The LSIE needs
to be solved subject to a Kutta condition that ∆p vanish at the trailing edge of B.
Reasonably (but not outstandingly) accurate numerical codes are available to solve
the LSIE for given planforms B and mean surface shapes f(x, y). The basic outputs
are lift coefficient CL and pitching moment via the centre of pressure location x = xP ,
and we use a code (called here “TS”, for Tuck and Standingford 1997) which gives



these quantities with about three figure accuracy, the planform B being discretised
into 5000 rectangular panels.

On the other hand, for the special case where B is the unit circle

x2 + y2 ≤ 1

it is possible to construct much more accurate solutions, in the form of truncated
infinite series. This is best seen indirectly, by noting that our real task is to solve
the 3D Laplace equation exterior to a circular disc which is the limiting form of the
oblate spheroid

z = ±ε
√

1− x2 − y2

as ε → 0. Hence we can write ∆p(x, y) as the value on z = 0 of an infinite series
whose terms are fundamental solutions of Laplace’s equation in oblate spheroidal
polar coordinates, which involve Legendre functions.

Solutions of this series type have been obtained by Robinson and Laurmann
(1956), Jordan (1973), Hauptman and Miloh (1986), Boersma (1989), and others,
with various assumptions made about the mean surface function f(x, y).

Flat discs at unit angle of attack

For the case f(x, y) = −x, very accurate results have been obtained by Jordan
(1973) and confirmed by Boersma (1989). The lift coefficient is CL = 1.79002 and
the centre of pressure is at xP = −0.52086, all 5 decimal places of accuracy (and
more) being reliable. By contrast, the lift coefficient predicted by lifting-line theory
is CL = 2.444, and the 2D “quarter-chord” centre of pressure is xP = −0.5. These
results are inaccurate because they are valid only at high aspect ratio, and a circle is
a low-aspect-ratio wing. Our general purpose LSIE solver TS produces CL = 1.79078
(error 0.04%) and xP = −0.52194 (error 0.2%).

Hauptman-Miloh twisted discs

Hauptman and Miloh (1986) constructed a simplified series solution which never-
theless gives a very accurate approximation to the above solution for a flat disc at
unit angle of attack. In fact (Boersma 1989) it is the exact solution for a “twisted”
disc

f(x, y) = −x+ xg(y)

where g(y) is a relatively small quantity. This distortion of the disc is so small that
the Hauptman-Miloh lift coefficient CL = 1.79075 is within 0.04% of the true flat-
plate value. However, the centre of pressure at xP = −.52360 is not quite so close to
the flat-plate value, differing by 0.5%. In fact these values are almost as close to the
flat-plate values as are the numerical results for the flat plate computed by the TS
program. At other angles of attack, we just have to scale this solution proportionally,
but note that then the twist also scales as the angle of attack changes.



Twisted discs with elliptic loading

Robinson and Laurmann (1956) also produced series solutions for a nearly-flat disc at
unit angle of attack. However, they used a constraint that the chordwise-integrated
loading vary exactly elliptically across the span. This means that the resulting
wing is optimal from the point of view of minimisation of induced drag. Again this
constraint results in a small twist g(y), different from and somewhat larger than
that of the Hauptman-Miloh disc. Again, the twist must vary in proportion to angle
of attack, and this effect is more significant for the Robinson-Laurmann twist than
for the Hauptman-Miloh twist.

Axisymmetrically cambered discs

Twist as introduced in the previous sections disturbs the axisymmetry of the circular
planform. An alternative departure from a flat disc at zero angle of attack has

f(x, y) = g(r)

for some shape function g(r), where r =
√
x2 + y2, maintaining axisymmetry.

For definiteness let us normalise so g(0) = 0 and g(1) = −1. The paraboloid of
revolution g(r) = −r2 = −x2−y2 is of particular interest, noting that since only the
longitudinal slope contributes to the linearised aerodynamics, the term “−y2” can
be ignored. Hence this gives the same lift and moment as for a circular disc with
parabolic x-wise camber f(x, y) = −x2, which has been studied by previous authors.
Boersma (1989) gives CL = 1.86469 and xP = 0.47064. The values computed by TS
are CL = 1.86842 (error 0.2%) and xP = 0.47102 (error 0.08%).

More generally, consider the “monomial” family of shapes g(r) = −rn for some
power n. The above paraboloid is the case n = 2. As n increases, the slope of the
body is more and more concentrated near its rim r = 1. Table 1 gives CL and xP for
some members of this family. Note how little the centre of pressure changes within
this family, staying near to xP ≈ 0.47 for all n. This seems characteristic of most
convex axisymmetric bodies.

Power n Lift coefficient CL Centre of pressure xP
2 1.86842 0.47102
4 2.99223 0.47092
10 5.19459 0.47062
20 7.62819 0.47012

Axisymmetric discs with zero pitching moment.

Although concave-down axisymmetric discs at zero angle of attack tend to have
negative (leading-edge down) pitching moments, it is easy by a linear combination
of two or more such shapes (with at least one “upside-down”) to eliminate the
pitching moment entirely, so moving the centre of pressure to the axis. This is a



Figure 1: An axisymmetric disc with zero pitching moment and positive lift.

highly desirable property for any spinning device, as it eliminates gyroscopic forces
inducing roll.

Unfortunately, since as we have seen, convex shapes also tend to have centres of
pressure that are very close to each other, elimination of pitching moment in this
way also almost eliminates lift! However, some apparent success retaining a small
positive lift can be achieved by a linear combination of three monomial shapes. For
example

g(r) = −5.21r2 + 9.21r10 − 5.00r20

has CL = 0.03322 and xP = 0.01535, so the pitching moment coefficient CL.xP is
less than 0.001. Figure 1 shows this (non-convex) shape.
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