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1 Introduction

It is well known that to describe the motion of a ship sailing
in waves strip-theory gives very good results for many prac-
tical hull forms. For this reason not much attention is paid
to three dimensional solvers. In recent years computer pro-
grams are developed to compute the forces and motions of a
ship sailing in waves by means of linear diffraction programs.
These frequency-domain codes are in analogy with the pro-
grams developed for the zero speed case. This became possi-
ble since the one integral expression for the Green’s function
can be computed rather fast, so the main change in the zero-
speed diffraction program is the use of a different subroutine
for the Green’s function. Also the extra terms in the pressure
must be taken care of. In fact the method uses a linearisa-
tion around the unperturbed flow around the ship. This may
be a good approximation for slender and thin ships. For this
class of ships the strip-theory and its modifications give good
results, as well. However, in the case of short waves these
methods tend to underestimate the added-resistance severely.
This becomes a problem if one tries to optimise a hull form if
the average weather condition is taken into consideration. If
the ship has a blunt hull-form the local steady flow influences
the value of the added-resistance greatly. In this paper we
present a time-domain method that is capable to solve differ-
ent kinds of linearised formulations. As an input the program
may use the unperturbed flow, double-body flow or the non-
linear steady flow. In principle the method can be transformed
into a non-linear solver. However, this has not been imple-
mented yet. Experience with the raised panel code RAPID
suggests that in the future a similar approach is possible for
the unsteady part. The major part of this presentation is based
on the PhD theses of Hoyte Raven [1] for the steady part and
of Tim Bunnik [2] for the time-domain model.

2 The non-linear formulation

We consider a symmetrical, smoothly-shaped ship sailing
with a constant velocity U in incoming waves that propagate
in a direction which makes an angle θ with the forward di-
rection of the ship. We choose a coordinate system fixed to
the ship and moving with its mean velocity U . The frequency
at which the incoming waves are encountered changes due to
this forward speed, unless the ship sails in beam waves. The
x-axis is along the direction of this current in the symmetry
plane of the ship. The z-axis points upwards and the origin
lies in the undisturbed free surface z = 0. The ship is free
to rotate around or translate along any of its axes. The water
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depth h is supposed to be constant and, therefore, the bottom
corresponds to the plane z = −h.

We assume that the flow is irrotational and incompress-
ible, a velocity potential Φ exists, which gradient is the ve-
locity of a fluid particle

u = ∇Φ

Inside the fluid domain this potential satisfies the equation of
Laplace, which follows from the conservation of mass

∆Φ = 0

On the free surface two physical conditions hold. The first is
the dynamic free-surface condition, stating that the pressure
should equal the atmospheric pressure, which is true when
we neglect surface tension. The pressure p inside the fluid
follows from the equation of Bernoulli, which relates it to the
velocity potential
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Imposing atmospheric pressure on the unknown free surface
z = ζ gives the dynamic free-surface condition
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The second is the kinematic condition, stating that a fluid par-
ticle cannot leave the free surface, which is mathematically
described by
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If these two conditions are combined, the free-surface eleva-
tion ζ can be eliminated, resulting in a condition that only
contains the velocity potential
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Care must be taken with the definition of the derivatives in this
condition. The gradient, ∇, is defined as the vector with par-
tial derivatives in x,y and z-direction. The partial derivatives

∂
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, however, are here defined as operators working

on a function that is defined at the free surface z = ζ, so for
F = F(x,y,ζ(x,y)), these partial derivatives relate as follows
to the partial derivatives ∂
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So implicitly, the vertical partial derivative is hidden in these
expressions. The partial derivatives ∂

∂xζ
and ∂

∂yζ
can be ob-

tained by calculating the differences between points on the
free surface, so we can use very simple difference schemes
for a flat plane. We consider finite water depth, hence
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∂n

= 0 at z = −h

The condition on the hull of the ship becomes
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=
∂ααα
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·n on H(t) (3)

where ααα is the displacement and H(t) the exact position of the
hull in the ship-fixed coordinate system.

To obtain a unique solution, we have to impose a radiation
condition. This condition states that waves generated by the
ship should propagate away from the ship (in the steady case
behind the ship).

3 Decomposition of the potential

It is very time consuming to solve the non-linear equations
formulated in the previous section, especially when the ship
has a forward speed and is sailing in waves. With the in-
crease of computer power, non-linear calculations become
more and more promising. With the present state of com-
puter technology, however, it is not yet possible to calculate
the non-linear time-varying flow around a sailing ship within
acceptable time limits yet. We therefore decided to split up
the potential in a steady and an unsteady part. For the time
being the unsteady potential will be linearised. The appropri-
ate small parameter is the wave steepness ε = A/λ, where A
is the amplitude and λ the length of the time-dependent wave.

The velocity potential is now decomposed into a steady,
time-independent part Φs, and an unsteady, time-dependent
part Φu. We retain the linear terms for Φu.

Φ(x, t) = Φs (x)+φu (x, t) (4)

For the steady potential Φs (x) several descriptions are used.
for slender and/or thin ships it is common practice to replace
this potential by the unperturbed steady potential Ux. The
next step is that for slowly moving blunt bodies one replaces
this by the double body potential or at finite forward speed by
the solution of the non-linear problem. Before deriving the
linearised equations for the unsteady potential we consider
the steady potential in more detail.

The steady potential

We first consider the still water case, hence in front of the ship
the free surface is unperturbed. The non-linear free surface
conditions for the steady potential are
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ζs is the steady free-surface elevation that satisfies
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On the hull, the steady flow satisfies the no-flux condition

∂Φs

∂n
= 0 on H (7)

For a long time one has linearised these equations and solved
the remaining linearised free surface condition. To compute
this potential several methods are used. To compute the wave
elevation along the hull the Dawson method is well known. It
performs reasonably well for a variety of ship hulls. It is com-
mon practice to decompose the steady potential as follows

Φs(x) = Φr(x)+φ(x), (8)

where Φr(x) equals the double body potential. This seems
to make sense, however one must be a little bit more pre-
cise. The question is in what sense is this an asymptotic ex-
pansion. No mention is made about small parameters in this
context. If one takes the slenderness parameter B/L or D/L
where B is the beam and D is the draft of the ship and applies
a straight forward perturbation technique it is consistent to re-
place the double body flow by the unperturbed flow Ux. It is
well known that this leads to a non-uniform expansion near
the bow and the stern of the ship, where a stagnation point is
situated. Because of this phenomenon it is more convenient
to look at the slow-ship linearisation first. This is done by
several authors in the seventies and eighties. Well known is
the work of Baba et al [3, 4], Newman [5], Eggers [6] and
Brandsma [7] after the pioneering report of Ogilvie [8] in
1968. Brandsma shows that a strickt expansion with respect
to the Froude number, with the assumption that the potential
function and its derivatives are ofthe same order of magni-
tude, the free surface condition as derived byEggers is asymp-
totically consistent if applied at the double body freesurface
z = ζr. If one introduced the new z coordinate z′ = z−ζr and
drops the primes in the coordinates, the free surface condition
becomes
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where D(x,y) is determined by the double body potential. We
have
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In the sequel we either use as steady potential the double body
potential or the solution of the complete non-linear steady



problem obtained by RAPID ([1])

The unsteady potential

We first decompose the free surface elevation in a steady and
an unsteady component as well. The total free surface eleva-
tion is written as

ζt(x,y, t) = ζs(x,y)+ζu(x,y, t) (12)

where the steady level ζs is given in (6). If we retain linear
terms with respect to the unsteady potential the unsteady con-
tribution becomes
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on z = ζs. If we now retain the linear terms with respect to
φu(~x, t) in the expression for the dynamic and kinematic free
surface condition and eliminate the free surface elevation we
obtain the result derived by Newman in 1978 and used by
Bertram [9] in 1996. The final expression is transferred to a
condition along the steady free surface z = ζs, we obtain on
z = ζs
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Far away from the ship, where the steady flow is uniform, so
Φs = Ux, this condition reduces to the Kelvin condition
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∂φu

∂z
= 0 on z = 0 (15)

The linearised unsteady potential is solved in the time-domain
with the nonlinear steady potential obtained by RAPID and
with the double body potential in the short wave case by
means of a ray approach.

Asymptotic formulation

It can be shown that the free surface condition reduces to
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φ = 0 on z = 0, (16)

where z is taken with respect to the double body free surface.
With the ray expansion for the potential

φ(x, t;k) =
N

∑
j=0

a j(x)

(ik) j eikS(x)−iωt , (17)

we derive the eikonal equation for the phase function S(x)

(1−u ·∇S)4−∇S ·∇S = 0, (18)
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Figure 1: Ray pattern for a
cylinder with τ = 0.25
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Figure 2: Ray pattern for a
cylinder with τ = 0.5
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Figure 3: Added resistance for (i) a circular cylinder and (ii)
a sphere

and the transport equation for the amplitude function a0(x)

{2∇S+4(1−u ·∇S)3u} ·∇a0 +a0MS = 0, (19)

where MS = ∆3S−2u ·∇(u ·∇S)(1−u∇S)2.
In Figure 1 and 2 we show the ray pattern for a sphere for

two values of τ = ωU/g and in Figure 3 the added resistance

Numerical Formulation

We now continue with the numerical formulation as proposed
by Prins [12], Sierevogel [10] and applied by Bunnik [2] for
the finite speed case. We write

φu (x, t) = φinc (x, t)+φ(x, t)

and we write the total unsteady perturbed potential function as
a source distribution over the boundaries of the computational
domain an integral expression for the velocity. The same can
be done for the velocities. If x is inside the fluid domain, on
the hull, or on the free surface, this results in

φ(x, t) =
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We use the following time independent source function
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Figure 4: Steady wave pattern, scaled with the length of the
ship, Fn = 0.2.

For the time derivatives we introduce second order difference
schemes
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The unsteady potential’s space derivatives are also dis-
cretized.

4 Results for an LNG carrier

We apply our model to a 125,000 m3 LNG carrier sailing at
Froude numbers Fn = 0.14, Fn = 0.17 and Fn = 0.2 in wa-
ter with a depth h = 175 metres. We compare our predictions
for the motions of the ship and the added resistance at these
Froude numbers with measurements from MARIN. Calcula-
tions will be done for wave angles θ = 0 (head waves), θ = π

4
(bow-quartering waves) and θ = π

2 (beam waves). We also
vary the length of the incoming waves. The total carrier was
divided into 2380 panels.

Figure 4 shows the steady wave pattern of the LNG car-
rier when it sails at Froude number Fn = 0.2. To calculate
it, RAPID used 60 panels per wavelength, and 14 panels in
transverse direction.

In the computer code we may choose the steady potential.
The RAPID steady potential is used in to compute the added
resistance for three values of the Froude number. To do so
first the first order quantities such as the added mass(moment)
and damping matrices must be computed. Taking into ac-
count first order motions the added resistance is computed
and compared with experimental values obtained at MARIN.
The results for head seas and bow-quartering waves are shown
in Figure 5 and 6. The computed and measured results are
given for Fn = 0.2, 0.17, 0.14 top-down Figure 7 shows
the added resistance computed with the non-linear flow (top),
the double-body flow (middle) and the uniform flow (bot-
tom). Although the predicted motions of the ship were not
that much different, we see large differences between the pre-
dicted added resistances. The use of the double-body flow
results in a large underestimation of the added resistance,
and the use of the uniform flow in a huge underestimation
of the added resistance. These underestimations cannot be
caused by the small differences between the predicted mo-
tions. Therefore, there must be another explanation. Since
the differences between the predicted added resistances do
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in head waves
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Figure 7: Added resistance in head waves and for Fn = 0.2.
The asterisks correspond to measurements.

not seem to be caused by the first-order fluid quantities on
the hull of the ship (otherwise there would have been larger
differences between the motions), nor the motions, they must
be caused by the predicted wave elevation on the steady wa-
terline of the ship.
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