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SUMMARY

Plane problem of finite plate behavior under periodic external load is considered. There are many numer-
ical methods for VLFS problems. But there are only few papers on plate behavior under periodic external
loads [1-2]. The numerical method based on the Wiener-Hopf technique, that was presented earlier for
the diffraction problem [3], is developed. The short-wave approximation of the solution is presented in
explicit form. Numerical analysis is performed for amplitudes of the plate deflection and the free surface
elevation depending on frequency, fluid depth and the character of external load. It is found that for low
frequencies deflection of the plate is maximal near the load region. For high frequencies waves reflected
from edges become significant and resonance amplification is found on the scattering frequencies. Exis-
tence and conditions of localized vibrations were revealed when the fluid is at rest and plate vibrations
of the plate are localized near the load region.

1. FORMULATION OF THE PROBLEM

We assume that the liquid is ideal incompressible and occupies the region −H0 < y < 0. The liquid
surface is covered partly with a thin homogeneous plate (y = 0, 0 < x < L0) of thickness h. The edges of
the plate are free. The external periodic pressure of the form q(x)e−iωt acts on the plate surface. In the
linear approach the fluid motion is described by the velocity potential ϕ, satisfying the Laplace equation.
We assume also that a wave length is much greater than the plate thickness.

First we consider the case of concentrated load q(x, t) = q0δ(x − x0)e
−iωt. The time dependence

of all functions is expressed by the factor e−iωt. We put ϕ = φ(x, y)e−iωt. To reduce the number of
free parameters, we introduce scaled variables as follows φ′ = φωρ/q0, w′ = wρg/q0, p′ = q0p, x′ =
x/l, y′ = y/l, t′ = ωt, l = g/ω2, where l is the characteristic length, g is the gravity acceleration, w is
the displacement, p is hydrodynamic pressure, ρ is fluid density. Hereafter all primes will be omitted.

In non-dimension variables we derive the following boundary-valued problem
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Here L = L0/l, H = H0/l, x∗ = x0/l, β = D/(ρgl4), d = d0/l, D is the flexural rigidity of the
plate, d0 is the plate draught. Furthermore, the radiation condition as |x| → ∞ and the regularity
condition in a vicinity of the plate edge should be satisfied. The last condition means that the fluid en-
ergy in vicinities of the plate edges is limited. According to the above assumptions the parameter d << 1.

2. THE SYSTEM OF INTEGRAL EQUATIONS

The problem (1)-(4) is solved by the Wiener-Hopf technique. We introduce the functions of the
complex variable α as follows
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Φ(α, y) = Φ−(α, y) + Φ1(α, y) + eiαLΦ+(α, y).

We denote by D±(α), D1(α) integrals of the form (5), where the integrand is the left side of (3),
and by F±(α), F1(α) analogous integrals where the integrand is the left side of (4). The functions with
subscript + and − are regular in the upper and lower semi-planes respectively. The function Φ(α, y) is
the usual Fourier transform. From (1) we have Φ(α, y) = C(α)ch(α(y + H))/ch(αH).

We introduce also dispersion functions K1(α) = α tanh(αH)− 1 for open water and K2(α) = (βα4 +
1 − d)α tanh(αH) − 1 for the liquid under the plate. The function K1(α) has two real roots ±γ and
a countable set of imaginary roots, K2(α) has two real roots ±α0, a countable set of imaginary roots
αn, n = 1, 2, ... and four complex roots ±α−1 and ±α−2.

From boundary conditions (2) and (3) we have D−(α) = D+(α) = 0, F1(α) = −ieiαx∗ . Then

D1(α) = D(α) = C(α)K1(α), F−(α) + F1(α) + eiαLF+(α) = C(α)K2(α)

Hence we obtain the equation

F−(α) − ieiαx∗ + eiαLF+(α) = D1(α)K(α), K(α) = K2(α)/K1(α) (6)

We factorize the function K in the form K(α) = K+(α)K−(α). Multiplying (6) by e−iαL[K−(α)]−1,
we transform it to the form
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Now we divide (6) by K−(α) and transform it to the form
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Using the analytic continuation onto the whole complex plane and the Liouville theorem, we obtain
from (7) and (8)
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where a1, a2, b1, b2 are unknown constants to be defined from conditions (4). This problem was solved
both with account for the structural inertia and without it.

The solution is essentially simpler if the structural inertia is neglected, i.e. d = 0. In this case
constants aj , bj are determined in explicit form. It is found that
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Here C−, C+ are contours along the real axis from −∞ to ∞ passing around points −α0,−γ above and
points α0, γ down, C−/C+ passes around zero down/above. Then we obtain the system
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3. Numerical solution

Integrals in the system can be evaluated with the help of the residue theory. Then we have the infinite
linear algebraic system with respect to the new unknown quantities ξj and ηj
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We can explicitly express ξj and obtain the matrix equation for the vector η: (E −C2)η = f where E

is the unit matrix, C is the matrix with elements cjm, f = Cf (1) + f (2).
The pressure and plate deflection are given as
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We consider now the case of distributed load q(x) 6= 0 for x ∈ [x1, x2]. If we multiply the obtained
solution by q(x∗) and integrate the result with respect to x∗ over interval [x1, x2], then we find the solu-
tion for the general case.

4. Short-wave approximation

We consider the case when L >> 1. Then all elements of the matrix C are exponentially small except
for the column m = 0 corresponding to the real root α0. Keeping only the distinguished elements and
replacing others with zero, we obtain the following explicit formulae
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So we can expect that the amplitudes ξj ηj are maximal when c00 is real. This occurs when α0L +
Arg(K2

+(α0)) = πk, k = 1, 2, ... This condition corresponds to the zero values of the reflected coeffi-
cients in the problem of diffraction of surface waves. Meylan [4] has shown that corresponding frequencies
are the scattering frequencies.

5. Numerical results



Calculations were performed for the plate used in the experiments [5]. External load has the form

q(x) =

{

q0[1 − (x − x0)
2/s2], |x − x0| < s,

0, |x − x0| > s,
(9)

Fig. 1,a presents the dependence of reflection and transmission coefficients for the diffraction problem
on the wave period Tp. Fig. 1,b shows the dependence on Tp of forced vibrations of the plate and free
surface under the load (9), where x0 = L/4, s = 0, 5 m. Dashed lines 1, 2 correspond to the free
surface elevation in the far field on the left and right from the plate. Solid lines 1, 2, 3 show the plate
vibration amplitudes at the left and right edges and at the load center point. We can see the resonance
amplification of vibrations of plate and fluid at high values of scattering frequencies. For small frequencies
plate deflection is concentrated near the load region, waves reflected from the edges are small.

Performed calculations have shown that for high values of frequency the structural inertia influence
is small, and the short-wave approximation is very close to the general solution. The depth influence is
essential for low frequencies. For high frequencies the dependance of the vibration amplitudes is weaker.
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Fig.1. Fig.2.
The existence and conditions of realization of localized vibrations were revealed when the fluid is at

rest and vibrations of the plate are localized near the load region. These conditions are

A0 =

x2
∫

x1

eiα0xq(x)dx = 0

and the load domain is far enough from the edges, so that edges are out of the region where decaying modes
from the load are essential. Fig.2,a shows the dependance of the value A0 on s. The example of localized
vibrations is presented in the fig.2,b for s = 1.4821 m, x0 = L0/2. Solid lines correspond to the plate
deflection, dashed lines correspond to the non-dimensional bending moment M(x) = βl|w′′(x)|/(Ld).
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