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SUMMARY 
 
At the 2002 Workshop, the author proposed [1] a new theory of wave breaking. It is that breaking is not caused by an 
instability, as previously thought, but is a reflection of a type of singularity in the linear velocity field. The singularity 
may be detected by tracking a sheet of particles (or indeed a single particle) as they move in this velocity field – when 
they reach such a singularity, the particles “escape”.  
 
This present paper presents comparisons between the threshold of particle “escape”, and the actual threshold of wave 
breaking as found by an exact fully-nonlinear computation. In the simple case of two waves of equal steepness ka, one 
twice as long as the other, an “escape” first occurs at ka = 0.17, or ka = 0.21 if the second-order potential is included. 
With the fully-nonlinear computation, the threshold of breaking is ka = 0.18. 
 
1.   BACKGROUND 
When it is breaking, a wave often imparts a very much 
larger force on a ship or offshore structure. This can be 
because the acceleration under the crest is much higher 
than just before breaking – typically 5g rather than 0.5g, 
see New et al [2]. Or, it can be because the near-vertical 
face of the wave produces an impact. Whatever the 
mechanism, it is often the case that conventional 
predictions of wave load have to be thrown out of the 
window, and ship designers have to fall back on age-old 
empiricism. 
 
For many years it has been widely believed that the 
origin of wave breaking is an instability of the wave 
crests. At the 2002 Workshop, however, the author 
proposed [1] a much simpler explanation, which is that 
breaking is a reflection of a type of singularity in the 
linear velocity field. The argument is laid out in full 
detail in [3]. No additional approximation is required to 
reveal the singularity. It is just a matter of replacing the 
classical arbitrary assumption with another equally valid 
one. The classical arbitrary assumption is that the theory 
of water waves should be based on a consideration of the 
zero-pressure surface, i.e. the dynamic boundary 
condition should be applied before the kinematic one. 
The alternative arbitrary assumption is that the kinematic 
boundary condition should be applied before the dynamic 
one. This means that the surfaces to be considered are not 
the constant-pressure surfaces, but are sheets of particles, 
moving in the velocity field defined by the first (or Nth) 
order velocity potential. These satisfy the kinematic 
boundary condition exactly, just as the traditional 
constant-pressure surfaces satisfy the dynamic boundary 
condition exactly. 
 
There is no change in the Nth order boundary conditions 
on the still-water position z = 0, derived by such an 
alternative argument. The difference is in the underlying 
behaviour of the constant-pressure and particle-sheet 
surfaces, at finite wave steepness. The former are 
completely smooth and single-valued, suggesting that the 
explanation for wave breaking must be something quite 
outside the classical theory, such as an instability. By 

contrast, the particle-sheet surfaces occasionally exhibit 
violent eruptions, with the particles escaping to infinity 
in finite time, and producing an overturning of the 
surface. This is a natural explanation for wave breaking, 
bringing it within the classical theory. It also applies to 
the case of wave diffraction around a body, and predicts 
for example wave breaking around a vertical cylinder, 
see the author’s paper [4] with J.R.Chaplin at the 2003 
Workshop, which compares the results with experiments. 
 
In the discussion of that paper, M.P.Tulin emphasised [5] 
the importance of checking the thresholds of wave 
breaking in the simpler case of undisturbed waves, by 
comparing with an exact non-linear computation. This 
present paper presents such comparisons, which are also 
featured in [3] and use the fully-nonlinear program from 
[2] which is described in detail by Dold [6]. 
 
2. PRELIMINARY CHECKS 
A suitable case for exact computation is a pair of waves, 
one of twice the length of the other, and both of the same 
steepness ka. The computations can be started with the 
trough of the short wave coinciding with the crest of the 
long wave, and then run until the crests coincide, at 
which point (or close to it) the waves may break. The 
threshold of breaking, in terms ka, can readily be found, 
and compared with the threshold of particle “escape”. As 
usual with comparisons between two computer programs, 
great care is needed with the preliminary checks, to 
ensure compatibility between the two results.  
 
We can take the first-order wave elevation as: 
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where in our case k1 = 2k2. We will set the scale by 
choosing k1/2 = k2 = 1m-1 (i.e. wavelengths of π and 2π) 
and g = 9.81 m/s2. The first order velocity potential 
associated with (1) is: 
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FIGURE 1. Particle-sheet surfaces based on 1st order flow (top) and 1st+2nd order flow (centre), together with an exact computation based on 2nd order starting conditions (bottom). The horizontal axis spans one wavelength 
(2π) of the longer wave. The crest of the longer wave and the trough of the shorter wave are both at π at the start of the computations. The particle sheets are shown at maximum crest elevation, or where they first overturn. 
The exact computations are shown at maximum crest elevation, or the farthest point reached by the program. The nominal focus point, where the crests coincide on classical 1st or 2nd order theory, is shown with an arrow.  



Given that k1 > k2 the second order potential is: 
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see e.g. Longuet-Higgins and Stewart [7]. 
 
To check that these potentials have been correctly 
programmed into MATHCAD, we can find the zero-
pressure surface (by means of the Newton-Raphson 
scheme, using the full pressure formula) for very small 
values of ka. We can then place particles on it at the 
time when the trough of the short wave coincides with 
the crest of the long wave, follow them in the flow field 
defined by (2) + (3) until the crests coincide, and then 
find the pressure error on them. If (2) + (3) is indeed a 
correct second-order solution, this pressure error should 
be third order in ka. Likewise, if we omit (3) then these 
pressure errors should all be second order. The Table 
below gives the results (expressed as a vertical distance, 
i.e. a pressure head) in both cases. 
 

ka 1st order 2nd order 
0.1 3.4 ×10-2 5 ×10-3 

0.01 2.6 ×10-4 3.2 ×10-6 

0.001 2.6 ×10-6 3.3 ×10-9 
0.0001 2.6 ×10-8 4.9 ×10-12 

 
Evidently the MATHCAD programming is correct. 
 
The zero-pressure surface and the potential on it, when 
the trough of the short wave coincides with the crest of 
the long wave, are suitable starting conditions for the 
exact computations We can first check the same case of 
small ka, and compare with the results in Table 1. If the 
2nd order potential is included in the calculation of the 
starting conditions, then the error when the 
computations had run until the crests coincided, was 
2×10-9 at ka = 0.001. This is within the bounds of error 
of the result in Table 1, and compared with the crest 
elevation, it is 1 part in 106.  
 
3. RESULTS AND DISCUSSION 
The exact computations were then run (again with 2nd 
order starting conditions) with much larger values of ka 
to find the point when the waves began to break. Figure 
1 shows the results, together with the corresponding 
particle-sheet computations, using both the 1st order 
potential (2) and 1st + 2nd order potential (2) + (3), and 
starting the particles on the two different zero-pressure 
surfaces (both based on the full pressure formula). 
 
As can be seen, the breaking thresholds are: 
 

• ka = 0.17 with the 1st order potential 
• ka = 0.21 with the 1st + 2nd order potential 
• ka = 0.18 with the exact computations 

 
These results are quite close – especially with the 1st 
order potential alone, when the threshold of “escape” 
differs from the breaking threshold by only about 5%. 

 
The fact that the threshold of “escape” is higher when 
the 2nd order potential is included, is to be expected 
from the minus sign in (3). In the combined crest, when 
the crests of the two waves coincide, (i.e. x = t = 0 
above), both the horizontal velocity ∂φ/∂x and pressure 
-ρ∂φ/∂t are positive in (2), but both are negative in (3). 
So the action of the 2nd order potential is opposing that 
of the 1st order potential. 
 
Figure 1 also reveals interesting differences in the 
position where the breaking occurs. The long wave 
overtakes the short wave at a speed √(g/k2)-√(g/k1) = 
√g(1-√½) so the crests coincide after a time 
(π/2)/{√g(1-√½)}. Since the crests of the long wave are 
initially at –π, π, there will after that time be a crest of 
the long wave is at –π + √g(π/2)/{√g(1-√½)} = π({2(1-
√½)}-1-1) = 2.221m. This nominal focus point is shown 
in Figure 1 with an arrow – it is actually also the point 
of maximum crest elevation with classical 2nd order 
theory. 
 
It is not surprising that the fully-nonlinear computations 
show the waves coming to a focus and breaking later, 
because it is well-known that steep focused waves in 
experiments do this, see e.g. Chaplin et al. [8]. More 
surprising is the way that the particle-sheet 
computations do this too, even though they are based 
on the ordinary potential (2) or (2) + (3), which show 
no such effect in the classically-defined surface. It is 
evidently not necessary to invoke the 3rd order effect of 
increasing wave speed with amplitude (see e.g. 
Newman [9] p. 249) to displace the focus point. 
 
Figure 2 shows the effect in more detail (it includes a 
vertical scale exaggeration of 2:1), by comparing the 
successive stages in the 1st order particle-sheet 
computations for ka = 0.16, with the zero-pressure 
surfaces at the same times. It may be seen that the 
maximum crest elevation with the zero-pressure 
surfaces is reached precisely at the nominal focus point, 
as it should be. The crest elevation is incidentally 
0.2639m, compared with the classically-defined crest 
elevation which from (1) is 0.16/2 + 0.16/1 = 0.24m. 
 
By contrast the particle-sheet surfaces reach their 
maximum crest elevation considerably later, and this 
elevation is greatly enhanced. This is because ka = 0.16 
is only one step short of the particle “escape” at ka = 
0.17, when the crest elevation becomes infinite. 
 
As the wave steepness increases further, it may be seen 
in Figure 1 that the point of overturning moves back 
towards the focus point, just as it does with the fully-
nonlinear computations. When the 2nd order potential is 
included, the particle-sheet reproduces the fully-
nonlinear computations very well at ka = 0.15, but 
thereafter the results are generally worse. The “escape” 
occurs after the breaking, and its position jumps back to 
the other side of the nominal focus point. 
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FIGURE 2. Particle-sheet surfaces (top) and constant-pressure surfaces (bottom), for the case ka = 0.16 in Figure 1. The bold line is the surface at the 
start of the computations, which is the same in both cases, and shows the crest of the long wave coinciding with the trough of the short wave. The other 
lines are the surface at successive intervals of 5% of the time until the crests coincide. 28 such successive surfaces are shown. Both graphs have a 
vertical scale exaggeration of  2:1, and the nominal focus point is shown with an arrow, as in Figure 1.  
 
4. CONCLUSIONS 
Overall, the particle-sheet computations reproduce the 
effect of breaking best when based simply on the 1st 
order potential, i.e. without including the 2nd order 
potential. 
 
This is also more satisfactory from a logical point of 
view. Introducing the 2nd order potential delays the 
threshold of particle “escape” from ka = 0.17 to ka = 
0.21. In the region between 0.17 and 0.21 there is a 
logical conundrum, because here the particle-sheet 
simulations are effectively relying on the 2nd order 
potential to prevent particle “escape”. Yet this second-
order potential itself relies on an argument about the 
dynamic error on the first-order kinematically-exact 
surface (or vice-versa, as explained in Section 1). This 
argument breaks down when there is a particle “escape” 
in that 1st order kinematically-exact surface. 
 
So it appears that the particle “escape” in the 1st order 
flow is the significant thing, and should be taken as the 
sign of wave breaking. The attraction of this view of 
wave breaking is of course its great simplicity. To 
detect breaking, it is merely necessary to track a single 
particle, in the way illustrated in Figure 2 in the 
author’s paper [1] at the 2002 Workshop. 
 
However long the simulation, the particle cannot drift 
off vertically prior to “escape” because the 1st order 
flow has zero vertical velocity at great depth. By 
conservation of volume, it thus has zero vertical 
velocity, on average, at the surface too. Breaking 
statistics can therefore be established by long 
simulations in irregular waves – see [3]. 
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Discusser: H. B. Bingham 
Have you considered applying this idea to predict the breaking point of waves shoaling on a 

beach? It seems like it would be straightforward to do in the context of a mild slope and energy flux 
conservation. 
 
 
Author’s Reply: 

That is an interesting suggestion. Howell Peregrine drew my attention to a paper by Biesel 
(U.S. National Bureau of Standards, Washington, Circular no. 521 (1952) 243-253) which does 
something similar on the assumption that the particles move in ellipses, as in a Gerstner wave. 
Biesel found that the surface particles began to overturn, at a certain point on the beach. I would 
presumably find the same. My argument is different, however, since I am not constraining the 
particles to move in ellipses (and I have no vorticity, unlike a Gertsner wave). Therefore I would 
presumably find a different breaking point. This point is discussed, together with many other results 
using my approach, in my paper in the Newman Honorary Volume of J. Eng. Maths. (to appear - 
2007). 
 


