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1. Introduction

In the analysis of the transverse vibration of a floating structure of very thin plate configuration we
usually assumme its draft is zero. This assumption is mathematically legitimate when not only the
body’s horizontal size but the wavelength of sea waves is very large compared with the draft and it
leads to accurate prediction as far as the transverse vibration is concerened. For the horizontal wave
force acting on the plate structure, however, we have to consider the effect of small but finite draft:
we need careful analysis of the flow close to the edge of the plate .
The flow predicted with the assumption of zero draft is interpreted as an outer flow and the local

flow within the small distance from the edges matching to the outer flow is to be found. A result of
this attempt is presented and applied to compute the drift force on a thin plate vibrating in waves by
direct integration of the pressure on the body surface. A result with this idea reported by the present
author ( Ohkusu 2003 ) is not satisfactory in that the matching is not complete. In this paper this
inadequacy is removed.
We assume a floating thin plate is very long and the flow when it is in beam seas is taken appro-

priately to be two dimensional with generator paralell to the z axis. The x and z axese are on the
mean free surface and the y axis directs vertially upwards; the width of the plate is 2 and the draft d
(Fig.1). The gravitaional constant g is 1 in our unit system. Monochromatic wave of the frequency
ω and the wave number k is incident at beam; the water depth is deep and k = ω2. Assumption of
our analysis is that the wave length is very small (k >> 1) while the draft is small relatively the
wavelength (kd << 1).

2. The local flow near the side surface

For the flow induced by the transverse vibration of a thin plate floating on the free surface, the outer
solution is approximated by the flow of the plate of zero draft because its draft is small compared with
other length scales. This flow, when z = x + jy ( j stands for imaginary number ) is close to z = 1
(k(x− 1) = O(1), ky = 0, x > 1), is given by
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where the fist line on RHS is φR the velocity potential for radiation, the second line φD the velocity
potential for diffraction and the third line φe an asymptotic form of eigen function as k >> 1. The
function G0(x, y) and H(x, y) are functions of a ltttle complicated mathematical form (Ohkusu 2003).



φR and φD in eq. (1) were constructed from the asymptotic solutions of Leppington (1972), while φe
is newly introduced for achieving the matching to the local flow solution. A+ represents the effect of
the vibration ζ(x)eiωt of the plate which is computed by
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We choose a continuous function f(x) of f(1) = A and f(−1) = B, then φe has a logarithmic
singularity of the magnitude A at x = 1. A and B are unknown constants to be determined later in
the matching to the inner local flow. Ge(x, y) is a solution of
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Ge satisfying the radiation condition is obtained assuming an appropriate f(x) ( see Appendix)
In order to evaluate the fluid pressure on the side surface of the thin plate, we have to find the

local flow in the inner domain of the size O(d) near x = 1, near enough for the finite draft d to be felt.
First we obtain φR+φD+φe at z = 1+O(kd). It requires somewhat lengthy algebra but the result

is
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where the coordinate is rescaled as X = k(x − 1)/kd. A and B are replaced by A∗kd log kd and
B∗kd log kd respectively for the convenience of matching to be shown later.
For the local flow in the inner domain near the plate edge, the free surface condtion is approximated

by the rigid surface. The local flow must match to eq.(5) at X → ∞ . Considering that eq.(5) is
composed of the constant terms and the uniform flow term except for the logarithmic singularity, we
come up with the local flow in the form of

φ = i

r
2

k
ei(k+π/8) +

r
π

2
A+eiπ/8 + [A∗C1 +B∗C2]kd log kd

+

Ã
2

r
2

π
ei(k+π/8) +

r
1

π
A+eiπ/8

!
kd log kd · ψ(X,Y ) (6)

where ψ is the flow for unifrom flow on a step as shown in Fig.2
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it is straightforward to complete the matching by putting
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B∗ is determined similarly by analysis of the flow at the left edge of the plate at x = −1.

3. Drift force

Steady force acting on the surface RR0 ( its sign is negative ) is computed by
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Here η(1)eiωt and ζ(1) eiωtare the wave elevation at the right edge of the plate x = 1 and the vibration
of the plate at this location respectively; the bar on the integral stands for the mean over a period
and the asterisk the complex conjugate; φX and φY are X and Y component of the fluid velocity on
the surface RR0.
In eq.(10) the lowest order term given by the first term will be understood as the relative wave

elevation effect resulting from the pressure above y = 0 and the second lowest part coming mainly
from the second term is of O( kd log kd ) higher order than the first term. The third term is of much
higher order and neglected. DSR, if we retain the terms to the order O( kd log kd ), is written as:
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Here δ is the amplitude of incident wave and A+and ζ are normalized by δ. And
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Similarly the drift force acting on the plate at lee-side surface is given by
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Other contribution DB to the drift force will come from the pressure acting on the bottome surface;
the pressure of the lowest order is computed by the sum of φR given by (6) and φR given by (7):
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Here the detailed expressions for D2 and D3 are omitted for the sake of brevity.
The drift force acting on a thin but a finite draft plate is given by the summation of eqs.(12), (13)

and (14).



3. Numrical computation

Once the vibration ζ is computed, the drift force is readily evaluated. The hydrodynamic force
to induce the plate transverse vibration is evaluated by a mathematical expression of φR and φD
corresponding eq. (1). Formulating equation of the vibration with this force is straightforward. In
solving the vibration equation, however, the analytical expression of φR does not necessarily produce
so much computational advantage since φR is given in the form of a functional of ζ and the main part
of equation of the vibration is the fourth derivative of ζ.We employ a numerical method proposed by
the present author ( Namba and Ohkusu 1999 ) to compute the vibration ζ, with which one is able to
compute the vibration directly without two-step process of computing hydrodynamic force first and
then solving the vibration equation.
Numerical results of the drift force with this ζ substituted into eqs.(12), (13) and (14) will be

presented at the Workshop.
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Appendix
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