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Figure 1: Experimental protection cover.

The photograph above shows a 1:21 model of a protection cover, used to shelter bottom equipment used in
offshore oil production, such as well-heads. The full scale dimensions are about 20 m × 15 m. As can be seen
in the picture it consists in a tubular frame with an open area ratio around 35 %. Other designs have lower
porosity ratios (15-20 %).

An operational problem is the installation of such structures, from the surface crane ship down to the sea-
floor. One must check that the loads exerted on the structure itself and on the hoist are within tolerable
limits. Therefore it is desirable to evaluate the hydrodynamic properties of such structures. For standard ”large
bodies” this is done classically through linearized potential flow theory: hydrodynamic coefficients are expressed
as added mass and damping matrices, frequency dependent (due to the free surface) but amplitude independent,
and wave excitation loads. Viscous effects are sometimes introduced a posteriori via a drag term, giving an
amplitude-dependent correction to the damping.

Decay or forced motion tests in still water of models such as shown in figure 1 have revealed that not only
the damping but also the added mass depend, to a large extent, on the motion amplitude.

In 1990 Molin & Legras proposed a theoretical model to derive the added mass and damping of a truncated
vertical cylinder with slots: it consisted in replacing the alternance of solid and open parts by a uniform porosity,
applying a quadratic relationship between the pressure differential and traversing velocity, and recurring to the
usual linearized potential flow theory. This provided amplitude-dependent hydrodynamic coefficients in good
agreement with values derived from model tests. Since then the same approach has been applied to a variety
of problems and geometries like vertical or horizontal plates (Molin & Fourest, 1992; Molin, 2001a), shrouded
cylinders (Molin, 1993) and periodic arrays of perforated disks in unbounded fluid domain (Molin, 2001b). The
latter case being relevant to the stabilizing plates incorporated to the truss spars.

In this paper we consider the closely related case of one single perforated disk in-between the free surface and
sea-floor. The disk undergoes forced vertical motion in the absence of waves. The motion amplitude is assumed
to be small so that boundary conditions can be set at the mean positions of the disk and free surface. The only
non-linearity introduced in the problem is the ”discharge equation” that relates the pressure drop and relative
fluid velocity through the porous disk.



The fluid domain is bounded by the bottom (z = 0) and the free surface (z = h). The disk radius is a and it
is located at a distance d from the bottom. The fluid is divided into 3 sub-domains: an outer domain 1 (R ≥ a,
0 ≤ z ≤ h), a domain 2 below the disk (R ≤ a, 0 ≤ z ≤ d), and a domain 3 above the disk (R ≤ a, d ≤ z ≤ h).

We take W = Aω cos ωt as the imposed vertical velocity and we use potential flow theory. For a solid
disk this is an acceptable assumption as long as the Keulegan-Carpenter number is sufficiently small. For a
perforated disk we must also make sure that the flow separates through the openings and that the rotational
wakes remain confined within a short distance of the disk. This means that the openings must be small (and
numerous enough to be idealized as uniform porosity). Then it makes some sense to use potential flow theory
to describe the outer flow.

As in Molin (2001b) the discharge equation is taken under the form

p2 − p3 = ρ
1− τ

2 µ τ2
(Φz −Aω cos ωt) |Φz −Aω cosωt|. (1)

Here τ is the porosity ratio (open area divided by total area) and µ a discharge coefficient (usually in-between
0.5 and 1).

Equation (1) is partly linearized into

ϕ2 − ϕ3 = − i
ω

8
3 π

1− τ

2 µ τ2
(ϕz −Aω) ‖ϕz −Aω‖ (2)

where ‖ ‖ stands for the modulus of the complex number and Φ(R, z, t) = <{ϕ(R, z) exp(−iωt)}.

The boundary value problem to be solved is then:

∆ϕ = 0 in the fluid (3)
g ϕz − ω2 ϕ = 0 at the mean free surface z = h (4)

ϕ2 − ϕ3 = − i
ω

8
3 π

1− τ

2 µ τ2
(ϕz −A ω) ‖ϕz −Aω‖ on the disk z = d 0 ≤ R ≤ a (5)

ϕz = 0 on the bottom z = 0 (6)
radiation condition R →∞ (7)

At the outer edge of the disk the pressure differential is nil. Hence the traversing velocity is also zero. We
take advantage of this feature to expand ϕz(R, d) as

ϕz(R, d) = A ω

[
1 +

∞∑

i=1

Di J0(νiR)

]
(8)

where the ”wave numbers” νi are the roots of J0(νia) = 0. This provides an orthogonal basis over the disk.

The BVP is solved through eigen-function expansions, with the velocity potential being developed as:

• Sub-domain 1

ϕ1(R, z) = Aω a

{
A0

cosh k0z

cosh k0h

H0(k0R)
H0(k0a)

+
N1∑

n=1

An cos knz
K0(knR)
K0(kna)

}
(9)

• Sub-domain 2

ϕ2(R, z) =
Aω

2d

(
z2 − R2

2

)
+ Aω a

{
B0 +

N2∑
n=1

Bn cosλnz
I0(λnR)
I0(λna)

}
+ Aω

N4∑

i=1

Di

νi

cosh νiz

sinh νid
J0(νiR) (10)

• Sub-domain 3

ϕ3(R, z) = A ω
[
z − h +

g

ω2

]
+ Aω a

{
C0

cosh µ0(z − d)
cosh µ0(h− d)

J0(µ0R) +
N3∑

n=1

Cn cosµn(z − d)
I0(µnR)
I0(µna)

}

+Aω

N4∑

i=1

Di

νi

(
δi cosh νi(z − d) + sinh νi(z − d)

)
J0(νiR) (11)



where
ω2 = g k0 tanh k0h = −g kn tan knh = g µ0 tanh µ0(h− d) = −g µn tan µn(h− d) (12)

δi =
ω2 tanh νi(h− d)− g νi

g νi tanh νi(h− d)− ω2
(13)

and J0, I0, K0, H0 = J0 + i Y0 are the standard notations for Bessel and Hankel functions.

The conditions that remain to be fulfilled are the matching equations for ϕ and ϕR at R = a, and the
discharge equation. The difficulty arising from its non-linearity is overcome through an iterative procedure
whereby equation (5) is written as

∑

j

[
− 8 i

3 π
K̃C f(R)− coth νjd− δj

νja

]
Dj J0(νjR) =

1
2 a d

(
d2 − R2

2

)

−1
a

(
d− h +

g

ω2

)
+ B0 +

∑
n

(−1)n Bn
I0(λnR)
I0(λna)

− C0
J0(µ0R)

coshµ0(h− d)
−

∑
n

Cn
I0(µnR)
I0(µna)

(14)

where K̃C is the ”porous Keulegan-Carpenter number”, defined as (cf Molin, 2001b):

K̃C =
1− τ

2 µ τ2

A

a
(15)

and f(R) = ‖∑
i Di J0(νiR)‖ is evaluated from the solutions obtained at the previous iterations.

Multiplying both sides of equation (14) with R J0(νiR) and integrating in R from 0 to a for i = 1, . . . , N4

gives the linear system
M(i) · −→D (i)

= −→
ED + DB · −→B (i)

+ DC · −→C (i)
(16)

Similarly the matching conditions at R = a result into the vectorial equations (applying a procedure à la
Garrett, 1971):

−→
B

(i)
= −−→

E21 + BA · −→A (i)
(17)

−→
C

(i)
= −−→

E31 + CA · −→A (i)
(18)

−→
A

(i)
= −→

E1 + AB · −→B (i)
+ AC · −→C (i)

+ AD · −→D (i)
(19)

Eliminating −→A (i)
, −→B (i)

and −→C (i)
in-between equations (16) through (19) gives a linear system in −→D (i)

which
is solved by a standard Gauss routine. Convergence is reached within a few iterations. The complex added
mass coefficient is then obtained by

M33

ρ a3
= Ca + i Cb = 2π

[
2 h− d

4 a
− a

16 d
− g

2 a ω2
+

B0

2
+

N2∑
n=1

(−1)n βn Bn

λn a

− J1(µ0a) C0

µ0a cosh µ0(h− d)
−

N3∑
n=1

γn Cn

µna
+

N4∑

i=1

(coth νid− δi)
Di

ν2
i a2

J1(νia)

]
(20)

where βn = I1(λna)/I0(λna) and γn = I1(µna)/I0(µna).

Comparison with experimental results

Tests were performed at Marintek with different hatch models, but, unfortunately, always in mid-water, away
from the free surface and bottom, in quasi infinite fluid conditions.

The model shown in figure 1 was submitted to forced motion tests. Added mass and damping were derived
from the force record. In the calculations the rectangular frame was idealized by a disk of same area. Figure 2
shows the experimental hydrodynamic coefficients vs. the calculated ones, with a porosity ratio of 35 % and a
µ coefficient of 0.75. They are given vs. the ”porous Keulegan-Carpenter number” K̃C (equation 15).

Figure 3 shows results obtained with two other models of smaller size, with a length over width ratio of 2 (not
quite circular) and open area ratios of 16 and 25 %. The added mass and damping coefficients were derived from
decay tests. Again the calculations were done for a disk of identical area. It should be noted that the calculated
results in figure 3 are just the same as in figure 2: in infinite fluid the non-dimensional added mass and damping
coefficients only depend on K̃C . This time the agreement is good for the added mass coefficient but strong



Figure 2: Added mass and damping coefficients from forced motion tests. Calculated (lines) vs. measured values.

deviations occur for the damping when K̃C becomes larger than 1. This is presumably due to vortex shedding
from the outer edge which is not taken into account by the present theory and which becomes dominant when
K̃C →∞.

Figure 3: Added mass and damping coefficients from decay tests. Calculated (lines) vs. measured values.
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Discusser: R. Porter
Presumably there is a singularity in the fluid velocity at the edge of the disk. The

matching conditions you use (matching pressure and horizontal velocity across r = a) take
no account of this singularity. Does this result in a slowly convergent system of equations
for your unknown coefficients?

Author’s reply:
For sure the strong singularity has an effect on the convergence of the series. As

an illustration, here are the added mass and damping coefficients obtained in the case
h = 10m, d = 9 m, a = 10 m and T = 10 sec, as functions of the truncation order N
(with N1 = N2 = N3 = N , the disk being solid).

N Ca Cb

10 11.56044 18.68005
20 11.30441 19.18106
50 11.14161 19.46748
100 11.09415 19.55812
200 11.06849 19.60234
400 11.05578 19.62413

Discusser: Q.W. Ma
Good agreement has been shown between experimental and calculated results for the

cases with a horizontal disk in vertical motions. I would like to know if you have results
about the influence of the angle of the disk with respect to the horizontal direction. I am
also grateful if you would make comments on how to modify equation (1) to deal with
the case where a disk is not horizontal.

Author’s reply:
If the disk is not horizontal equation (1) will still hold with the relative velocity taken

in the normal direction. The resolution will have to be fully numerical with the disk
represented by appropriate singularities.


