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Introduction 
 Simulation of non-linear water waves has received a numerous studies.  Among them, finite 
element, finite volume, finite difference and boundary element methods are widely used.  These methods 
have provided many useful and satisfactory results.  However, their successes rely on good meshes.  
Those meshes may require a large amount of computational costs and may become over-distorted during 
simulation. Although the over-distortion problem may not arise if using fixed meshes, numerical 
diffusion due to advection terms may become severe and the motion of the floating body is not easy to 
cope with when such meshes are adopted.   
 Recently, numerical methods which do not need any grid or mesh have been developed and 
extended to simulate flows with a free surface (see, e.g., Dalrymple & Kino, 2001 and Lo & Shao, 2002).  
Among them, the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) 
methods have demonstrated the promising features of meshless methods to model the problems of this 
kind.   
 In addition to SPH and MPS, another meshless method,  called meshless local petrove-galerkin 
(MLPG) method, has been proposed by Atluri and Zhu (2000) and Atluri and Shen (2002).   The 
success of the MLPG method has been reported in solving convection-diffusion problems, 
fracture mechanics problems, plate bending problems and so on.   In this paper, brief discussions 
will be given about our attempt to apply the MLPG method to simulating the nonlinear water 
waves. 
 
Numerical formulations 
 The flow of impressible and non-viscous fluids is considered, which is governed by the 
following equations and conditions: 
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where, ρ is the density of fluids, p the pressure, ur  the velocity of fluids, U
r

  the velocity of solid  
boundaries and gr  the gravitational acceleration. 
 It is well known that the non-viscous flow can be formulated by velocity potential.  
However, because our research efforts will not be restricted to non-viscous flow in future, the 
potential formulation is not adopted here. 
 To solve the above equations in Lagrangian form, a similar methodology for SPH method, 
as described by Lo and Shao (2002), will be used.  In this method the velocities and the positions 
of fluids are updated at each time step by the following procedure: 
 

1) Computing the intermediate velocities and positions: 
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2) Estimating the pressure 

 



In order to establish the equation for the pressure, the velocity at the end of each time step is 
split into 
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 It must satisfy the momentum equation (2), which, after approximating the time 
derivative by a finite difference, results in 
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The velocity in Equation (5) must also satisfy the continuity equation (1), leading to 
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This equation is used to find the pressure ( )1+np . 
 
2) Computing the velocity and the position at 1+= ntt  
After the solution for  is found, the velocities and so the positions of fluids at the end of 
current time step may be estimated using Equation (5) and 
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 It should be noted that the above formulation is for the non-viscous flow but it is not 
difficulty to extend it to viscous flow by adding viscous stress terms to Equation (3). 
 In order to solve Equation (7), the MLPG method is used in this work.  The details of 
MLPG method can be found in Atluri and Zhu (2000).   The main idea of the method is that: 
using a set of nodes to represent the fluid particles in the flow domain; defining a circle sub-
domain  (called integration sub-domain) for each node; deriving a weak form of differential 
equations over each of all the integration sub-domains; approximating unknown variables in 
term of a weight function which is then inserted into the weak form to form a set of algebraic 
equations.    
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 Over each integration sub-domain, the weak form of the Equation (7) may be written as: 
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where φ is the test function that can be arbitrary.  Atluri and Shen (2002) have suggested six 
options for the test function.  The Heaviside step function, which equals to one in the sub-
domain and zero elsewhere, will be used in our work because the formulation based on this test 
function may be more efficient than others as suggested by them.  Using the Heaviside step 
function as the test function, Equation (8) can be rewritten as: 
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where  is the boundary of   and IΩ∂ IΩ nr  is the normal vector of  IΩ∂  pointing out of the sub-
domain.  
 The unknown function p needs to be approximated by a set of discretised variables.  
Generally, the approximation may be written as 
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where  are nodal variables and jp̂ ( )xΦ j
r  interpolation functions which are called shape function 

as they play a similar role to a shape function in a finite element method.   Atluri and Shen (2002) 
have discussed various available options for the shape function.   One of them is based on a 
moving least-square (MLS) method, which is adopted in our work.   Using this method, the 
shape function may be given by 
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The weight function, ,  may be chosen as a spline function defined by Iw
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where  is the size of support domain of the weight function and Ir II xxd rr
−=  the distance 

between the node I and the point xr . 
 Inserting Equation (10) into Equation (9) and applying it to all inner nodes yields  
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 Equation (16) does not include the nodes on the boundaries where boundary conditions 
should be satisfied.   The condition on the solid boundary may be imposed on by applying 
Equation (8) to non-circular sub-domains of boundary nodes.  The condition on the free surface 
may be imposed on by adding a penalty term in Equation (8), as suggested in Atluri and Shen 
(2002).    However it was found in this work that imposing the boundary conditions in the 
following way is better: 
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 Equation (16) and (17) can be solved to give  at all nodes and so the pressure can be 
estimated from (10), which is then used to update the velocity and the position of each node. 
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Numerical Validation and Examples 
Preliminary numerical validation has been made by applying the method to a piston wavemaker 
problem in a 2D tank with L/d=8, where L is length of the tank and d is the depth of water.  The 
motion of the wavemaker is specified by ( )taS ωcos1−⋅=  with a/d=0.0041 and ω=1.45 dg / .  
At the end of the tank, an artificial damping zone with length l/d=3 is added to eliminate the 

 



reflection.  The comparison with the analytical solution (Eatock Taylor, Wang & Wu, 1994) is 
presented in Figure 1 and shows a good agreement. 
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Figure 1 Comparison of wave elevation with analytical solutions for time at 2.5, 4.5 and 6.5 

(Solid line: numerical) 
 
The wave generated by the wavemaker with a larger amplitude a/d=0.1 is also simulated.  The 
configuration of nodes in the vicinity of the wavemaker is shown in Figure 2. 
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Figure 2 The node configuration for wave at t=6.5 generated by a piston wavemaker 

 
The code for the method is being improved.  Further results and discussions will be presented in 
the workshop. 
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Discusser: P. Ferrant
One of the difference between your method and SPH is that you explicitly impose a

pressure condition on the free surface. This seems to be problematic in case of complex
free surface configuration. Is your method capable of simulating such events as overturning
waves?

Author’s reply:
The MLPG method described in this paper can theoretically deal with any kind of

boundary value problems, independent of the way imposing the boundary conditions
on the free surface. There are several approaches to impose the dynamics boundary
conditions on the surface. The approach employed in this work is to directly force the
water pressure equal to the atmospheric pressure. As long as one can identify which
particles lie on the free surface when overturning waves occur, this approach would also
be applicable to the cases.


