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1. Introduction 
As a numerical tool for the hydroelastic analysis of a very large floating structure 
(VLFS), Murai & Kagemoto (1999) have proposed a method in which the structure is 
divided into small substructures and the substructures are treated as if they are 
independent freely floating structures while the structural rigidity that constraints 
their motions are accounted for as additional restoring forces in the equations of motion 
of each substructure. In this process, the hydrodynamic forces acting on the 
substructures are evaluated while accounting for the hydrodynamic interactions among 
them by the hydrodynamic interaction theory of Kagemoto & Yue (1986).  
When the VLFS is a pontoon-type structure, however, there arise some ambiguities in 
applying the hydrodynamic interaction theory for the evaluation of the hydrodynamic 
forces acting on the substructures.  
 
2. The ambiguities in applying the hydrodynamic interaction theory 
For the sake of simplicity, we consider the hydrodynamic interactions of two sub-bodies 
that comprise a single body as shown in Figure 1. 
In the hydrodynamic interaction theory of Kagemoto & Yue (1986), the ambient 
scattering wave field around each body in incident waves of angular frequency ω  is 
expressed as the summation of cylindrical waves in the local cylindrical coordinate 
system )2,1(),,( =izr iii θ  fixed to the corresponding sub-body as follows.  
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Here the velocity potential that represents the wave field is assumed to be written as 

( )ti
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ωφ −Re . nn KH ,)1(  are respectively the nth-order Hankel functions of the first kind 

and modified Bessel functions of the second kind. ),2,1(, L=mkk m are the positive real 
roots of the following dispersion equations for water depth h  and gravitational 
acceleration g . 
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In the hydrodynamic interaction theory, the scattering waves due to Sub-body 1 given 
by Equation (1) )1( =i  is treated as additional incident waves to Sub-body 2 and vice 

versa. The ambiguities then arise are summarized as the following 2 points. 
Question-1 
Is it justified to treat as if there exists some water between the sub-bodies although 
there actually exists no water between them? 
 
 
 
 
 
 
 
              Sub-body 1                    Sub-body 2 
              Figure 1 A single body as the sum of two sub-bodies 
Question-2 
Can the wave field due to the wave scattering by Sub-body 1 be expressed by Equation 
(1) everywhere in the vicinity of Sub-body 2? 
 
 
 
 
 
 
 
 
 
 
Figure 2 Representation of the cylindrical waves emanating from the distributed 
singularities by the cylindrical waves emanating from the origin of the coordinate 
system common to all the singularities 
 
Perhaps, Question-2 may need some explanation. 
It is well known that the wave field around any (floating/submerged) body can be 
expressed by the hydrodynamic singularities distributed over the wetted surface of the 
corresponding body. In other words, the ambient wave field φ  around any body can be 

expressed by the summation of the cylindrical wave field emanating from each 

There is no water between the two sub-bodies. 



hydrodynamic singularity as follows. 
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Here M represents the number of hydrodynamic singularities distributed over the body 
surface and ),,( iii zr θ  represents the local cylindrical coordinate system fixed to the 
i-th singularity. The question is, whether the wave field represented by Equation (2) can 
always be expressed in terms of the cylindrical waves emanating from a certain common 
single coordinate system fixed to the corresponding body as in Equation (1).  
According to the addition theorem of Bessel functions, the following relationship holds. 
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Here 
imnB  is given as 
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where ii 0,θl are defined as shown in Figure 2.  Substituting Equation (3) into 
Equation (2), the first term of φ  can now be written as follows. 
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as nA0 , it seems now that Equation (2) can really be re-written in 

terms of the single common coordinate system ),,( 000 zr θ . In other words, the wave 

field resulted as the sum of cylindrical waves emanating from M  singularities may be 
expressed by the cylindrical waves emanating from the origin of the single common 
coordinate system.  
Here, on the other hand, care must be taken on the fact that the addition theorem of 
Bessel functions given by Equation (3) holds only if ir l>0 . This implies that the wave 

field due to i-th singularity can not be expressed properly in terms of the ),,( 000 zr θ  

coordinate system in the vicinity of the body where ir l<0 . Therefore, the wave field 
inside the circumcircle of the largest horizontal cross-section of the body may not be 



expressed properly as the sum of cylindrical waves emanating from the origin of the 
cylindrical coordinate system fixed to the center of the circumcircle. 
 
3. Conclusions 
Numerical and theoretical investigation on the two questions raised in the previous 
section were carried out. Although the details of the investigation will be presented in 
the workshop, here the conclusions obtained are described.  
Answer to Question-1 
It seems to be justified to treat as if there exists some water between the sub-bodies 
although there actually exists no water between them. 
Answer to Question-2 
In the strict sense of mathematics, it can not be justified to evaluate the hydrodynamic 
forces acting on a single body by dividing the single body into two sub-bodies and 
applying the hydrodynamic interaction theory, if the largest horizontal circumcircle of 
one of the sub-bodies contains part of the other sub-body as shown in Figure 3. 
 
 
 
 
 
 
 
 
 
Figure 3 An example in which the largest circumcircle of one sub-body contains part of 

the other sub-body 
 
In practice, however, the errors caused by violating the prerequisite of the Bessel 
function’s addition theorem may be very small for the evaluation of horizontal forces 
whereas they could be of a noticeable amount for the evaluation of vertical forces. 
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Discusser: D.V. Evans
The method you describe was used some time ago and called the wide-spacing approx-

imation in a paper by M. Srokosz & D.V. Evans in J. Fluid Mechanics in 1979, Vol. 90,
pp. 337-362. We too found that two barriers could be very close and still give accurate
results on a wide-spacing approximation. But for very closely-spaced barriers there is al-
ways going to be a resonance close to Ka=1 due to the solid body-like flow of the trapped
fluid and this does not occur if the bodies are in contact.

So whereas over most of the frequency spectrum, the method might work, there will
always be problem at some frequencies.

Author’s reply:
Thank you for the comment. I will look into how the resonance you indicated may

affect the conclusions I presented in the Workshop.

Discusser: J.N. Newman
Do you have any ideas why the errors are relatively large for heave and small for surge?

Author’s reply:
Suppose that we calculate the hydrodynamic forces acting on a box-type floating

structure by dividing the structure into two substructures and applying the hydrodynamic
interaction theory of Kagemoto & Yue, then there exists some part of the substructures
where the effect of the waves coming from the other substructure is not properly accounted
for because the precondition of the Bessel functions’ addition theorem is not satisfied. As
I presented in the Workshop, in the case of two very closely located vertical plates of zero
thickness, the part where the precondition of the Bessel functions’ addition theorem is
violated is the two vertical surfaces of the plates facing each other. Then, even if the effect
of the waves coming from the other plate is not properly accounted for on the two vertical
surfaces, the errors for the surge force due to this fact should be very small (or even zero
if the distance between the two plates is zero), because the errors caused by the wrong
estimation of the wave effects on the two vertical surfaces cancel each other. On the other
hand, however, if we consider two closely located thick plates (box-type substructures),
then the part where the precondition of the Bessel functions’ addition theorem is violated
also includes some part of the bottom surfaces, which in turn implies the pressures acting
on the corresponding bottom surface are wrongly estimated and therefore the errors for
the resultant heave forces could be significant.

Discusser: J.N. Newman
The ”pumping” resonance in the gap will occur at K‘times draft = 1. Is that in the

range of your tests or outside that range?



Author’s reply:
It is not in the range of our tests. However, I recently carried out experiments using

two vertical plates in which I saw what happened if the distance of the two plates was
very small, and thus K * draft = 1. So far I have not observed strong resonant motions
of the water column in the gap nor a complete reflection.


