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1. INTRODUCTION

Small-scale surface fluctuations taking place behind steady
breaking waves has received attention in quite distinct
research frameworks, from naval hydrodynamics to geo-
physical applications, with many papers primarily con-
cerned with the remote sensing, radar or infrared, of
the ocean surface (see [1] and [11], for instance). Short-
wavelength spilling breakers, also referred as ‘micro-
breakers’ are usually originated by the wind and play
an important role in terms of momentum, heat and gas
exchange between atmosphere and ocean. At this short
scales, due to the strong action of surface tension, the
characteristic plunging jet is replaced by a bulge which
slides down along the forward face of the wave [12].
Since the breaking takes place without wave overturn-
ing, the amount of air entrained is significantly reduced
[8].

The generation and the downstream propagation of
free surface ripples have been subject of intense research
studies. In [6], by using the dispersive focusing tech-
nique, very gentle breakers have been generated ex-
perimentally by progressively reducing the amplitude
of the wavemaker motion. It has been shown that, at
the early stage of the breaking establishment, the bulge
grows while the toe is substantially fixed with respect
to the crest. In a next stage, the bulge begins to slide
down upon the forward face of the wave and a shear
layer develops between the gravity induced downslope
flow near the free surface and the underlying upslope
flow. Instabilities of this shear layer eventually lead
to the formation of a train of downstream propagat-
ing ripples. In [7] and [5] a submerged hydrofoil has
been used to produce a quasi–steady breaking and the
frequency and wavenumber spectra of the downstream
propagating surface fluctuations have been analysed.
Comparisons with a theoretical model confirmed that
shear flow instabilities are the primary mechanism for
ripples generation.

An accurate analysis of the space–time behaviour
of the surface fluctuations behind steady breakers has
been carried out also in [13]. Wavenumber–frequency
spectra show that ripples’ wavelength grows during their
downstream motion while the temporal frequency of
fluctuations, recorded at different longitudinal position,
remains substantially constant. This led authors to
speculate that ripples behaves like surface waves on a
spatially varying current.

2. NUMERICAL MODEL

In this paper small scale breakers generated by a sub-
merged hydrofoil are numerically studied by solving the
two-dimensional unsteady Navier–Stokes equations for
the two–phase flow of air and water. A significant re-
duction of the computational effort is achieved by using
the heterogeneous domain decomposition approach de-
veloped in [3]. With this approach a potential flow ap-
proximation is used in a subdomain about the hydrofoil
and a suitable matching condition has been developed
to exchange information between the viscous flow re-
gion about the interface and the potential flow region
about the hydrofoil.

The two-fluid Navier–Stokes solver is coupled with
a Level-Set technique for the interface capturing thus
allowing the description of free surface motion even in
the presence of complex interface topologies. The jump
in the physical properties of the two fluids is spread
across a small region about the interface. Surface ten-
sion effects are modeled as a continuum force by using
the model originally proposed in [2]. A more detailed
discussion of the coupling strategy and of the numerical
method can be found in [10].

3. THE GENERATION OF FREE SURFACE
RIPPLES

By using the model discussed above, the un-
steady free surface flow generated by a submerged hy-
drofoil starting from rest has been numerically simu-
lated. Some scale effects on the wave breaking estab-
lishment and the formation of downstream propagating
surface ripples have been discussed in [4] and in [9]. In
the latter, a careful analysis of the flow field taking place
beneath the free surface has been carried out aimed at
investigating the mechanisms governing formation and
downstream propagation of the surface ripples.

In figure 1 some results are shown in terms of vor-
ticity fields for the simulation at Re = 2537, F r =
0.567,We = 10.55. Results show the sequence of vor-
ticity fields ranging from the initial downslope motion
of the bulge until the beginning of the ripples genera-
tion. The instantaneous vorticity fields clearly display
the initial growth of the shear flow instabilities develop-
ing between the fluid inside the bulge, which is moving
upstream, and the incoming upslope flow.
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Figure 1: Sequence showing free surface profiles and vorticity contours during the first
downslope motion of the bulge, as seen in the hydrofoil frame of reference (We = 10.55, F r =
0.567, Re = 2537). The three black lines represent density contours at three different den-
sity values: ρ/ρw = 0.03, 0.5, 1. Configurations refer to the interval t = 14 to t = 16.2
with a time interval among successive configurations ∆t = 0.2. The development of shear
flow instabilities and the corresponding formation of free surface ripples is clearly shown.
Secondary vorticity also appears as a result of the interaction of primary coherent structures
with the highly curved troughs.

At a later stage, instabilities lead to the formation
of separated coherent structures that strongly interact
with the free surface, giving rise to ripples on the free
surface which are tracks of the vortex structures lying
beneath. The interaction of the vortex structure with
the free surface is responsible for the formation of a
scar, which corresponds to the ripple trough, just down-
stream the vortex structure itself. In the early stage
after their appearance, ripples grow in amplitude while
the wavelength is essentially related to the distance be-
tween two adjacent coherent structures. Hence, the rip-
ples wavelength grows during the downstream motion of
the vortex structures, due to both the growing distance
between adjacent structures and the diffusion process
of the single structure.

At a later stage, the intense interaction between vor-
ticity and the highly curved free surface is responsible
for the production of secondary vorticity shed into the

water, as it clearly highlighted by the last three con-
figurations in figure 1. The maximum intensity of the
secondary vorticity can be even large than that of the
corresponding primary structures. The velocity field
developing after secondary structures appear, acts to
hold back the primary ones, thus leading to the for-
mation of vortex pairs. Due to the self-induced veloc-
ity field, vortex pairs are “overtaken” by the associated
troughs which, therefore, experience a reduction of their
curvature.

4. SPACE-TIME ANALYSIS OF FREE SUR-
FACE FLUCTUATIONS

With the aim of evaluating the main features of their
downstream propagation, spectral analysis in space and
time are performed on the basis of the instantaneous
measurements of the free surface elevation immediately
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Figure 2: Frequency and wave–number spectra of the free surface fluctuations. On (a), the
frequency spectrum is plotted at different longitudinal positions in the frame of reference
attached to the hydrofoil. On (b) the wavenumber spectrum is plotted at different time and
on (c) the k − ω spectra is drawn.

ahead and behind the breaking region. By following
what done in [13] and [5], frequency and wave-number
spectra are calculated and plotted versus longitudinal
position and time, respectively. In order to evaluate
the spectra, the free surface elevation obtained for the
numerical simulation is sampled with ∆t = 0.005 in the
interval t = 37 to t = 56 and, in space, with ∆x = 0.01
in the range x = 0.8 to x = 4. The horizontal extension
of this window is chosen as large as one and half wave-
lengths (based on the linear theory). The frequency–
wave-number spectrum is evaluated as

S(k, ω) =
∫ ∫

η(x, t)ei(ωt−kx) dωdk .

In figure 2a the contours of the frequency compo-
nents of the free surface fluctuations are shown ver-
sus the streamwise location. As discussed in [13], this
graph clearly displays the existence of two distinct com-
ponents: (i) a low frequency one, related to the surge
motion of the toe and (ii) a higher frequency compo-
nent, due to the downstream propagation of the ripples.
From these results, it can be seen that the high fre-
quency component, centered about |ω| = 15, is related
to the downstream propagation of the ripples. The ver-
tical contour levels about x = 1.15 represent the broad-
band frequency components associated with the motion
of the sharp front of the bulge.

The high frequency component is ascribed to the
ripples propagation since this contribution only appears
downstream the position of the top of the bulge. The
frequency components associated to the ripples forma-
tion and propagation exhibit a rapid initial growth from
x ∼ 1.4 to x ∼ 1.8. Further downstream, but for a weak
reduction in the amplitude taking place up to x ∼ 2.2,
they remain nearly constant. These results are in a

qualitative good agreement with what found by [13],
and the larger decay rate observed in the experiments
can be attributed to the differences in the flow condi-
tions and to the two-dimensional assumption made in
the present numerical computations.

With regards to the spatial Fourier transform, in
figure 2b the wavenumber spectrum is displayed versus
time. This picture clearly show that, periodically, com-
ponents at short wavelength appear about |kx| = 25.
As the time elapses, that is during the downstream
propagation, the ripples’ wavelength grows. This as-
pect agrees with what discussed in [13].

On the basis of the above considerations, it follows
that the ripples wavelength grows during their down-
stream motion while no substantial changes occur in
terms of frequency components. This fact led [13] to
speculate that the behavior is “consistent with the idea
of waves propagating on a spatially varying current”. In
order to further support this idea, in [13] the dispersion
relation given by linear theory

ω = (gkx + σk3
x)

1/2
+ Ukx, (1)

is plotted on the wavenumber-frequency spectra by us-
ing U = 0 and U = Ur. In figure 2c the same graph
is drawn on the basis of the present numerical results.
As already stated, the oscillating motion of the toe is
associated with small frequencies while high frequency
components at short wavelength are instead induced by
the sharpness of the bulge front. Downstream propa-
gating free surface ripples manifest themselves at higher
wavenumbers with ω ranging from 10→ 30.

As discussed in [13], ripples are generated in the
breaking region where the fluid is almost at rest in the
hydrofoil frame of reference and the dispersion relation
with U = 0 (solid line in figure 2c) provides a higher



bound for the ripples wavenumber. As they propagate
downstream, thus reducing their wavenumber compo-
nents, the underlying current is accelerating and then
the dispersion relation with U = Ur is progressively
approached (dash line in figure 2c).

In order to get a better understanding of the free
surface fluctuations, its power spectrum S is evaluated
as

S(ω) =
|XT (ω)|2

T

and plotted on figure 3 for the half plane ω > 0 only.
On the same graph, the power law ω−7/2 found in [7]
on the basis of their experimental measurements is also
plotted. From this graph it can be seen that the power
spectrum of the numerical results follows the power law
ω−15/2 which is significantly different from the experi-
mental value. We believe that this different behaviour
has to be ascribed to the lack of three-dimensional ef-
fects on our numerical simulation. This hyphothesis is
supported by the fact that in [7] some two-dimensional
results obtained by using an Euler solver to study the
evolution of periodic shear flow beneath the free surface
are shown which appear to follow a ω−10 power law.
The difference between our numerical results and those
discussed in [7] is likely due to the differences in the
governing equations and in the boundary conditions.
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Figure 3: Power spectrum of the free surface
fluctuations at x = 1.75. The dashed line rep-
resents the ω−7/2 power law found in [7] (on
the basis of the experimental measurements)
while the dotted line represents the ω−15/2

power law.
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