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Summary : Scattering of surface water waves by the two edges of a strip-like ice-cover, modelled as a
thin elastic plate, floating on clean water is studied for the case of deep water. The main problem is
reduced to solving two coupled Carleman-type singular integral equations which are solved approximately
by assuming the breadth of the strip to be large. The numerical results for the reflection coefficient are
depicted graphically against the ice-cover parameter and also against the wavenumber. Oscillatory nature
of the reflection coefficient is found to be the prime feature of the graphs.

1. Introduction : The main interest in the in-
vestigation of scattering problems involving ice-sheet
modelled as an elastic plate lies in the fact that these
problems have wide applications in designing float-
ing airports, offshore pleasure cities etc. Chakrabarti
(2000) obtained analytically the reflection and trans-
mission coefficients of the scattering problem involv-
ing a semi-infinite ice-cover, by solving a Carleman-
type singular integral equation by the technique of
Riemann-Hilbert problem. Linton and Chung (2003)
used residue calculus technique in the mathemati-
cal analysis to investigate this problem. Tkacheva
(2003)considered the ice-wave interaction problem
wherein the ice-cover is a strip of finite width floating
on water of finite depth. She investigated the problem
by reducing it to a three-part Wiener-Hopf technique.
In the present paper the ice-cover is taken in the
form of a finite strip and the corresponding scattering
problem is solved by using Havelock’s expansion fol-
lowed by reducing it to two coupled Carleman-type
singular integral equations, which are solved approx-
imately after assuming the breadth of the strip to be
large.

2. Formulation : For the mathematical analysis
of the problem we assume linear theory and irrota-
tional motion and take a two-dimensional Cartesian
coordinates (x, y). Suppose water occupies the region
y > 0,−∞ < x < ∞ and a part of the water surface
0 < x < l, y = 0 is covered by a thin sheet of ice. If
Re{φ(x, y)e−iσt} denotes the governing velocity po-
tential then φ satisfies

φxx + φyy = 0,−∞ < x <∞, y > 0, (2.1)

Kφ+ φy = 0 on y = 0,−∞ < x < 0, l < x <∞,
(2.2)

where K = σ2

g
, g being the gravity,

Kφ+ φy +Dφyxxxx = 0 on y = 0, 0 < x < l, (2.3)

where D =
Eh3

0

12(1−ν2)ρg
is the flexural rigidity of the

material of the ice-cover,

∇φ→ 0 as y → ∞ (2.4)

φ(x, y) ∼

{

e−Ky+iKx +Re−Ky−iKx as x→ −∞,
T e−Ky+iK(x−l) x→ ∞,

(2.5)
R and T are the unknown reflection and transmission
coefficients respectively to be determined,

φyxx → 0 as x→ 0 + 0, l − 0, y = 0 (2.6)

φyxxxx → 0 as x→ 0 + 0, l − 0, y = 0 (2.7)

Also

φ(x, y) =















αe−λKy+iλKx + βe−λKy−iλK(x−l)

+A1e
−λ1Ky+iλ1Kx +A2e

−λ1Ky−iλ1Kx

+A3e
−λ̄1Ky+iλ̄1Kx +A4e

−λ̄1Ky−iλ̄1Kx

+χ(x, y)
(2.8)

where α, β,Ai(i = 1, ..., 4) are unknown constants
and χ(x, y) is an unknown and non-propagating so-
lution of Laplace equation. λK and (λ1K, λ̄1K) are
respectively the real and complex roots of the equa-
tion

Dz5 + z −K = 0 (2.9)

whose another pair of complex roots are (λ2K, λ̄2K).
Here Re(λ1K) > 0, Re(λ2K) < 0, Im(λ1K,λ2K) >
0.



3. Reduction to Carleman-type singular inte-
gral equation: Let φ(x, y) = ψxx(x, y), then ψ(x, y)
has the following representations:

ψ(x, y) = −
1

K2
e−Ky+iKx −

R

K2
e−Ky−iKx

+
2

π

∫

∞

0

A(ξ)L(ξ, y)eξx

ξ2 +K2
dξ, x < 0,

(3.1)

ψ(x, y) = −
1

λ2K2
{αe−λKy+iλKx + βe−λKy−iλK(x−l)}

−
1

λ2
1K

2
{A1e

−λ1Ky+iλ1Kx +A2e
−λ1Ky−iλ1Kx}

−
1

λ̄1
2
K2

{A3e
−λ̄1Ky+iλ̄1Kx +A4e

−λ̄1Ky−iλ̄1Kx}

+
2

π

∫

∞

0

B(ξ)eξx + C(ξ)e−ξx

ξ2(Dξ4 + 1)
2

+K2
M(ξ, y)dξ, 0 < x < l,

(3.2)

ψ(x, y) = −
T

K2
e−Ky+iK(x−l)

+
2

π

∫

∞

0

S(ξ)L(ξ, y)

ξ2 +K2
dξ, x > l, (3.3)

where

L(ξ, y) = ξ cos ξy −K sin ξy

and

M(ξ, y) = ξ(Dξ4 + 1) cos ξy −K sin ξy,

A(ξ), B(ξ), C(ξ) and S(ξ) are unknown functions to
be determined. Use of continuity of ψ and ψx across
the lines x = 0 and x = l and then application
of Havelock’s expansion theorem (Ursell (1947)) will
produce the following relations between the unknown
constants α, β,R, T and the unknown functions B(ξ)
and C(ξ).

−
1

2K3
−

R

2K3
= −

α

K3λ2(λ+ 1)
−

βeiλKl

K3λ2(λ+ 1)

−
A1 +A2

K3λ2
1(λ1 + 1)

−
A3 +A4

K3λ̄1
2
(λ̄1 + 1)

+
2

π

∫

∞

0

{B(ξ) + C(ξ)}DKξ5

(ξ2 +K2){ξ2(Dξ4 + 1)
2

+K2}
dξ

(3.4)

−
i

2K2
+

iR

2K2
= −

iα

K2λ(λ+ 1)
+

iβeiλKl

K2λ(λ+ 1)

−
i(A1 −A2)

K2λ1(λ1 + 1)
−

i(A3 −A4)

K2λ̄1(λ̄1 + 1)

+
2

π

∫

∞

0

{B(ξ) − C(ξ)}DKξ6

(ξ2 +K2){ξ2(Dξ4 + 1)
2

+K2}
dξ

(3.5)

−
T

2K3
= −

αeiλKl

K3λ(λ+ 1)
−

β

K3λ(λ+ 1)

−
(A1e

iλ1Kl +A2e
−iλ1Kl)

K3λ2
1(λ1 + 1)

−
(A3e

iλ̄1Kl +A4e
−iλ̄1Kl)

K3λ̄1
2
(λ̄1 + 1)

+
2

π

∫

∞

0

{B(ξ)eξl + C(ξ)e−ξl}DKξ5

(ξ2 +K2){ξ2(Dξ4 + 1)
2

+K2}
dξ

(3.6)

−
iT

2K2
= −

iαeiλKl

K2λ(λ+ 1)
+

iβ

K2λ(λ+ 1)

−
i(A1e

iλ1Kl −A2e
−iλ1Kl)

K2λ2
1(λ1 + 1)

−
i(A3e

iλ̄1Kl −A4e
−iλ̄1Kl)

K3λ̄1
2
(λ̄1 + 1)

+
2

π

∫

∞

0

{B(ξ)eξl − C(ξ)e−ξl}DKξ6

(ξ2 +K2){ξ2(Dξ4 + 1)
2

+K2}
dξ

(3.7)
Also this gives rise to the following coupled

Carleman-type singular integral equations:

λ(ξ)B1(ξ) +
1

π

∫

∞

0

B1(u)

u− ξ
du−

1

π

∫

∞

0

C1(u)e
−ul

u+ ξ
du

= FB(ξ), ξ > 0,
(3.8)

λ(ξ)C1(ξ) +
1

π

∫

∞

0

C1(u)

u− ξ
du−

1

π

∫

∞

0

B1(u)e
−ul

u+ ξ
du

= FC(ξ), ξ > 0,
(3.9)

where

B1(ξ), C1(ξ) =
DKξ5

ξ2(Dξ4 + 1)
2

+K2
{B(ξ)eξl, C(ξ)},

λ(ξ) =
ξ2(Dξ4 + 1)

2
+K2

DKξ5
,



FB(ξ) and FC(ξ) are functions involving the con-
stants.

As l → ∞ the above equations reduce to the fol-
lowing uncoupled equations:

λ(ξ)Bo
1(ξ)+

1

π

∫

∞

0

Bo
1(u)

u− ξ
du = F o

B(ξ), ξ > 0, (3.10)

λ(ξ)Co
1 (ξ)+

1

π

∫

∞

0

Co
1 (u)

u− ξ
du = F o

C(ξ), ξ > 0, (3.11)

where the superscript ‘o’ denotes the zero-order ap-
proximation to the functions B1(ξ) and C1(ξ) and
various constants appearing in F 0

B(ξ) and F 0
C(ξ).

Assuming the right-hand sides of the integral equa-
tions (3.10) and (3.11) to be known these are solved
by reducing to Riemann-Hilbert problems. This
will produce B0

1(ξ) and C0
1 (ξ) in terms of the un-

knowns α0, β0, R0, T 0, A0
1, A

0
2, A

0
3, A

0
4. Substituting

B0
1(ξ) and C0

1 (ξ) into the relations (3.4) to (3.7)
we will get four relations for the determination of
the eight unknown constants. The other four rela-
tions will be obtained from conditions (2.6) and (2.7).
Solving the linear system of eight equations in eight
unknowns we will get α0, β0, R0, T 0, A0

1, A
0
2, A

0
3, A

0
4.

To get the higher-order approximations we put
B0

1(ξ), C0
1 (ξ) into (3.8) and (3.9) and obtain

λ(ξ)B1
1(ξ) +

1

π

∫

∞

0

B1
1(u)

u− ξ
du = G1

B(ξ), ξ > 0,

(3.12)

λ(ξ)C1
1 (ξ)+

1

π

∫

∞

0

C1
1 (u)

u− ξ
du = G1

C(ξ), ξ > 0, (3.13)

where

G1
B,C(ξ) =

1

π

∫

∞

0

[C0
1 (u), B0

1(u)]e−ul

u+ ξ
du+ F 1

B,C(ξ).

Here the superscript ’1’ denotes the first-order ap-
proximation to the functions B1(ξ), C1(ξ) and the
unknown constants involved in F 1

B,C(ξ).

Proceeding as before, the unknown functions B1
1(ξ)

and C1
1 (ξ) can be obtained by a similar tech-

nique. Once B1
1(ξ) and C1

1 (ξ) are determined the
first-order approximations to the unknown constants
R, T, α, β,A1, A2, A3, A4 are computed numerically
by solving the eight equations comprising of the four
relations (3.4) to (3.7) and another four relations ob-
tained by using conditions (2.6) and (2.7). This pro-
cedure can be repeated to get more higher-order ap-
proximations. However this is not pursued here as

the first-order approximations give sufficiently accu-
rate results.

4. Numerical Results : For numerical calcu-
lation we have taken a characteristic length L in or-
der to nondimensionalize different parameters. We
have plotted the reflection coefficient |R| against the
ice-cover parameter D

L4 for KL = 1 in the Figure 1,
taking the strip-breadth l/L = 10. |R| exhibits os-
cillatory nature against D

L4 , which may be attributed
due to multiple reflections of the incident wave field
by the two edges of the strip of the ice-cover. Figures
for |R| against the wave-number KL for fixed values
of D

L4 and l/L, have also been drawn, and these ex-
hibit highly oscillatory nature. However, these figures
are not shown here.
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Figure1 : Reflection coefficient for KL=1 and l/L=10

5. Conclusion : The boundary value problem
arising in scattering of surface water waves by an ice-
strip modelled as a thin elastic plate is studied by
reducing the problem to solving a pair of coupled
Carleman-type singular integral equations. Graphs
for the reflection coefficient show its highly oscilla-
tory nature which is due to multiple reflection by the
two edges of the strip. The method can be employed
to study scattering problems involving two or more



finite ice-strips and also to the case when a finite strip
of free surface is embedded between two semi-infinite
ice-strips.
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Discusser: M.P. Tulin
The reflection of a wave requires that a horizontal force be exerted on the wave system.

For a flat plate it would seem that this force must originate at the edge of the plate. How
can this be in the case of an infinitely thin horizontal plate?

It would seem to follow that the actual thickness of the plate must appear as a param-
eter in the scattering problem. From the mathematical point of view, the limiting process
must involve both the wave amplitude, a, and the plate thickness, δ. Then, even though
both a and δ → 0, the ratio (a/δ) must appear as a parameter. Physically, if δ/a � 1,
the tops of the waves well flow onto the top of the plate, whereas, if δ/a � 1 water will
collect in the front of the edge, causing breaking.

Author’s reply:
Our problem may be considered as a model for a large floating structure in which

the thickness of the plate is small compared to the depth of the water not to the Wave
amplitude. Though we have not done any experimental study, we are sure from the
analysis and numerical results that some parts of the incoming wave will be reflected by
the two edges of ice-strip, whatever be the wave amplitude.

Because as a whole the ice-strip is very large in magnitude. It is infinitely long and
also, according to our problem, the width of the strip is large. If the thickness is infinitely
small, then only a prime part of the incident wave will be transmitted as I showed in the
last figure.

Discusser: D. Porter

1. Does iterative process converge?

2. Why is only first correction used?

Author’s reply:

1. Yes, the iteration process converges.

2. As we could not find any paper in which the numerical results for |R| for an ice-
strip in ’deep-water’ are given, we look the results for |R| up to first order based on
the following two facts. (i) The graphs of |R′| show relevant features for different
physical situation such as when D is small |R′| is small etc.. (ii) Few months ago we
studied a problem involving two different initial surfaces floating on the free surface.
From that problem we approached in a similar manner. We found that the graphs
of |R′| exactly coincide with those obtained earlier in Kanoria et al. (Wave motion,
1999) who got the results by reducing the problem to a three-part Weiner-Hopf
problem. Thus, in the present problem also we have not pursued beyond the first
order approximation.


