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1. INTRODUCTION
The response of a complex structure undergoing wave
forces in regular and irregular sea is investigated. A set
of experiments are performed in a towing tank basin
(INSEAN) provided with a wave maker. The anal-
ysis is carried on by considering the configuration of
three bodies of rectangular transverse section and plan-
form coupled together by elastic cables and individu-
ally moored to the seabed. This configuration is ac-
tually used in special docking operation for ships and
submarines as well. The prediction of the wave loads is
of practical importance, both to preserve the structural
safety of the system (and of the mooring lines) and to
avoid dangerous collisions between the floating struc-
ture and the docked vessels (see, for instance, Inoue [1]
and Ansari [2]). The design of this system presents sev-
eral difficulties due to the complexity of the analysed
structure. This justifies the development of numerical
simulations able to predict the whole system response
(rigid-body motion and mooring-chain forces) and their
validation through direct experimental measurements.
Only selected cases in regular and irregular waves are
presented in this paper.

2. EXPERIMENTAL SET-UP
The physical system under investigation is constituted
by three floating bodies of the same size whose shape
and principal dimensions are shown in Fig. 1. In or-
der to reproduce a more realistic configuration of the
cables, an artificial seabed providing constant water
depth (h = 0.50 m) was laid with metallic nets at-
tached to a truss in the INSEAN towing tank basin.
In Fig. 1 the fenders, the linking cables connecting ad-
jacent pontoons, and the mooring lines are displayed.
The fenders, of semi-cylindrical shape, were dressed of
rubber, whereas the metallic linking cables are made of
steel. The connection points of the mooring lines were
inserted on the lower wetted face close to the vertices.
All the cables used for mooring are built with metallic
chains and were fixed on the artificial seabed through
two ballasts. In Fig. 2 the actual configuration of
the three floating bodies, connected to each other with
cables and moored to the sea bed with eight lines, is
shown. The overall length is about 4 m. The side
mooring lines are connected to the intermediate pon-
toon (n.2), whereas the bow and stern mooring lines
are connected to the first (n.1) pontoon and to the
last one (n.3), respectively. In the following, we as-
sume that the waves travel from the pontoon n.1 to
the pontoon n.3, as indicated by the white arrow. The
rigid body motions of pontoons are recorded using the
Krypton Rodym DMM system (based on cameras sens-

ing LEDs glued on-board), the MOTAN system (an
inertial motion sensor unit), and some inclinometers
and accelerometers. The measurement of the mooring-
line forces is obtained by water-proof load cells, each
one connected to the model with a spherical linkage al-
lowing the cell to follow the direction assumed by the
chain.

Figure 1: Configuration of the floating structure.

Figure 2: Experimental set-up.

3. MODELING THE FLOATING STRUCTURE
The mathematical model for the single floating pon-
toon is introduced. Each pontoon is regarded as a rigid
body with six dof. Two co-ordinate systems are used
for describing the body motion: an inertial Cartesian
co-ordinate system (XY Z) fixed to the basin floor (the
X − Y plane concides with the still water level), and
a body co-ordinate system (xyz) with origin G, the
center of gravity of the pontoon. At time t = 0 the
reference system (XY Z) coincides with the body-fixed
co-ordinate system (xyz).
The equations of motion of a single rigid body are:

M v̇G = f , ˙(Jω) = m, ẋ = vG, Ṙ = ΩT R, (1)

where xG = {xG, yG, zG}T and vG are the co-ordinate
vector and the velocity vector of G, respectively, M
the body’s mass, J = RJbRT the inertia tensor, with
Jb = diag{Jxx, Jyy, Jzz}T , ω = {ωx, ωy, ωz}T the an-
gular velocity vector, R is the orthogonal rotation ma-



trix, Ω the angular velocity anti-symmetric matrix, f
the external force, m the external moment. It should
be noted the total number of variables is eighteen, be-
cause the matrix R has nine elements. However, since
they are not independent, one can reduce the number
of variables to twelve (six generalized displacements
and six generalized velocities) by using the Euler angles
α = {ϕ, θ, ψ}T . The second of Eq. 1 in the reference
system (xyz) is:
ω̇i = ωi+1ωi+2(Ji+1,i+1 − Ji+2,i+2)/Jii +mi/Jii

where i = x, y, z, that, using α, becomes Aα̈+b = m,
where the expressions of the matrix A and of the vec-
tor b (both depending on α) are not given for sake
of conciseness. This procedure presents some numer-
ical difficulties since the system might be numerically
unstable due to singularities in the A matrix. An alter-
native procedure [3] is to use quaternions to describe
the rigid-body rotation about the body center of grav-
ity G. The quaternion q arises from an ordered pair of
a scalar s and a vector v: q = (s,v) can be employed
to describe rotations. A correspondence between rota-
tions and quaternions is given by introducing the rota-
tion quaternion is:

q = {cos(β/2), sin(β/2) · u}
where β is the rotation angle and u identifies the ro-
tation axis. Thus, expressing the rotation matrix R
in terms of the components of the rotation quaternion,
the set of Eq.1 is replaced, after some mathematics,by:

ẋG = vG

v̇G = f/M
q̇ = 1/2Q{0, ωx, ωy, ωz}T

ω̇ = Ĵb(ω) + J−1
b m (2)

where the qi’s are the quaternion components, Q a ma-
trix whose elements are the qi’s and Ĵb is a proper vec-
tor. Since the quaternion representing a rotation has
unit modulus, these four components are not indepen-
dent and a normalization condition is added. Thus,
a set of first-order differential equations is obtained in
the unknown y = {x,v,q,ω}T , directly available for
numerical integration by a Runge-Kutta scheme. It is
worth to note that it is not indeed the case of the equa-
tion Aα̈+b = m, needing the inverse of A that meets
singularities.
Next, the force vector f (and m) must be explicitly
introduced in the previous set of equations. In partic-
ular, the vector f can be decomposed as:

f = fcab + fb + fg + ffl (3)

where fcab is the cable force, fb is the contact force ex-
changed by adjacent pontoons, fwe is the weight force
and ffl is the fluid force (in a similar way the vector
of moments m can be also decomposed). The forces
exerted by the fluid ffl on the pontoons can be too
decomposed as (see also [4]) ffl = fhs + fm + fw, with
fhs the hydrostatic force, fm the force due to the body
motion and fw the wave force. In particular, the wave
loads are determined by a first-order theory leading to

the forces due to the incident waves. In this case, the
expression of the force is

f (1)
w = Re

(∑N
j=1 H(ωj , µ)ζa,je

i(ωjt+εj)
)

where ζa,j , ωj , εj and µ are the wave-amplitude, the
frequency, phase and heading angle, respectively. Be-
cause of the simple shape of the pontoons, the expres-
sion of the transfer function H(ωj , µ) is provided in
closed form (see [4]). The second-order wave loads have
been also considered. Therefore, taking into account
(i) the instantaneous position of both the body and the
free-surface, and (ii) the nonlinearity associated with
the velocity of the fluid particles, it is possible to in-
clude non-zero, slowly-varying, nonlinear mean forces
in the form

f (2)
w = G(ωp) [η(t)]2

where η(t) is the wave-envelope, G is the wave spec-
trum, generally evaluated at the peak frequency ωp and
given by an expression due to Cox, G = ρg C3

√
V , with

C = 0.35 in the x direction and C = 0.25 in the y di-
rection. Using a time-domain approach, the linearized
Bernouilli theorem and under the hypothesis of non ro-
tational fluid, Cummins [5] showed that the forces due
to body motion can be expressed as:

fm = −
∫∫

SB
p · n dS = −Aẍ−

∫ t

−∞B(t− τ)ẋ dτ
where B(t) = 2

π

∫∞
0

B̂(ω) cos(ωt) dω and A = Â(ω)|ω=∞,
accordingly to Ogilvie, with Â and B̂ are the added
mass matrix and the added damping matrix, respec-
tively.
Finally, it can be remarked that the convolution inte-
gral can be evaluated by expressing the function B(t)
in terms of series of exponentials (Prony series, [6]),
i.e., B(t) =

∑3
p=1Rpe

λpt, that after some algebra, al-
lows to express the force at the time step n + 1 in
terms of the force at the previous time step n, i.e.,
f

(n+1)
p = eλp∆tfn

p − xn+1−xn

λp∆t Rp

(
1− eλp∆t

)
making the

numerical scheme more effective and fast. The vector
of body forces fb exchanged between the pontoons is
given both by shock forces - due to small collisions be-
tween the pontoons - and elastic forces due to the link-
ing cables. Simple momentum and energy conservation
are used to simulate occurrence of contact events be-
tween pontoons (cfr. [7]). The forces due to linking
cables are in this case very simple since only taut con-
figurations have to be considered and each linking cable
collapses into a single spring element that does not sup-
ply any compression force. A rather general numerical
model for the mooring-line forces is here introduced
under the following hypotheses: (i) the material of the
cable is isotropic, homogeneous and elastic; (ii) the
displacements of points belonging to the same cross-
section are identical; (iii) the previous choice about
the displacement field implies that bending, torsion
and shear stresses are neglected. This model is used
for cables and chains as well. The following approach
returns cable’s equation of motion following an inverse
way with respect to the usual one: a discrete - intuitive
- model is developed, actually that used in the numer-
ical code; corresponding nonlinear differential equa-



tions are determined when the size of the discrete el-
ement of the chain tends to zero. The advantage re-
lies in a more clear physical meaning of the considered
model. The continuous cable has its discrete counter-
part approximation in a spring-mass chain of N ele-
ments. L is the length of the unloaded chain, giving
∆s0=L/(N − 1). Each element of the chain is replaced
by a mass m=ρA0∆s0 and by a stiffness k=EA0/∆s0,
where ρ, E, A0 are the mass cable’s density, elasticity
modulus and cross-section area of the unloaded cable,
respectively. The i−th mass equation is:

m üi = f (+)
i + f (−)

i + qi∆s0 (4)

where f (+)
i and f (−)

i are the elastic forces applied by the
adjacent elements, respectively, and qi is the external
load per unit length (including cable’s weight, hydro-
static and drag forces, dissipation due to internal loss
and friction between rings etc.). By using linear elastic
constitutive relationship f (+)

i = EA0 {(|∆xi| /∆s0 − 1)
∆xi/|∆xi|}, where ∆xi = xi+1 − xi (a similar expres-
sion holds for f (−)

i ), Eq. 4 is integrated with respect
to the time variable by a Runge-Kutta fourth-order
scheme. For ∆s0 → 0, indicating with s is the curvi-
linear abscissa along the stretched cable configuration,
Eq. 4 returns its continuous counterpart in the form:

ü =
1
c2

∂

∂s0

[(∣∣∣∣ ∂x∂s0
∣∣∣∣− 1

)
∂x
∂s

]
+

1
ρA0

q

where c =
√
E/ρ. Since ∂x/∂s0 = dx0/ds0 + ∂u/∂s0,

where dx/ds0 = τ 0 is the unit vector tangent to the
reference cable’s configuration, while ∂x/∂s = τ is tan-
gent to the actual cable configuration, one obtains:

ü =
1
c2

∂

∂s0

[(∣∣∣∣τ 0 +
∂u
∂s0

∣∣∣∣− 1
)

τ

]
+

1
ρA0

q

that is the continuous cable equation corresponding to
the numerical model given by Eq. 4. The nonlinearity
arises both by the terms τ and

∣∣∣τ 0 + ∂u
∂s0

∣∣∣. When τ

is constant with respect to s, e.g. for a taut chain,
and when ∂u/∂s0 << 1, i.e. for small deformation,
the previous equation returns the well known linear
wave equation. Considering the tension Ti along the
cable, given by Ti = |f (+)

i | = EA0 (|∆xi|/∆s0 − 1) (the
section area is considered invariant), Eq. 4, for ∆s0 →
0 becomes ρA0ü = ∂

∂s0
(Tτ ) + q In the case of chains

the force along the line is slightly modified as follows:{
|∆xi| > ∆s0 ⇒ f (+)

i = EA0

(
|∆xi|
∆s0

− 1
)

∆xi|∆xi|
|∆xi| < ∆s0 ⇒ f (+)

i = 0

since compression forces are not supplied by the chain
due to the unhooking between rings.
Let us analyse the added mass effect. The Morison’s
equation for a cylinder-shaped body states, accordingly
to the potential theory, that the added mass effect de-
pends on the acceleration normal to the cylinder axis.

For an element ∆s0 of the cable, the corresponding
added mass is µ ünorm = µ [ü − (ü · τ )τ ] that must
be considered together with the cable’s inertia term.
Taking Eq. 4 with the added mass terms, it leads to:

Miüi = f (+)
i − f (−)

i + qi

where the mass matrix is not shown for sake of concise-
ness. The fluid-cable interaction forces are completed
by the drag effect included through the formula (Tri-
antafyllou, [8]) fdrag = cnvn |vn| + ctvt |vt| where vn

and vt are the relative normal and tangent velocity of
the fluid with respect to the cable and the c’s suitable
coefficients depending on the angle of attack of the fluid
with respect to the local configuration of the cable. Fi-
nally, dissipation force along the cable are included in
the model: viscous dissipation forces, simulating the
internal loss of the material, and the friction forces due
to the relative motion between adjacent rings. At the
end each cable and each pontoon equations are coupled
by imposing that the cable N − th end element has the
same co-ordinates of its attachment point at the pon-
toon.

4. EXPERIMENTAL RESULTS AND COM-
PARISON WITH NUMERICAL SIMULATIONS
Comparisons between numerical results and measure-
ments of the body motion and cable forces are shown.
The response of the floating structure was considered
both in the case of deterministic (regular) and stochas-
tic wave loads. Preliminary, a test carried out on a
single freely-floating body is carried out by using non-
zero initial conditions on heave, pitch and roll sep-
arately, aimed to contribute to the validation of the
sea-keeping module of the numerical code. The com-
parison between experiments and simulations on heave
is presented is presented in Fig. 3, showing a satis-
factory agreement in terms of predicted frequency and
amplitude decay rate is observed. The response of the

Figure 3: Free heave oscillations of a single pontoon.

whole floating structure undergoing regular wave loads
is then considered. The wavelength has been chosen
in order to excite the multi-body modes of vibration,
whereas the wave amplitudes are reasonably small be-
cause this type of floating structure should be prefer-
ably moored in protected locations inside the harbors.
During the tests the x-axis of the floating bodies is ini-
tially parallel to the wave direction and it oscillates in



the neighborhood of this mean position (yawing) being
tied by the mooring lines. In Fig. 4 the time-history
of heave is shown for the case of incoming waves with
amplitude a=4 cm, wavelength λw =4/3 L and fre-
quency fw=0.541 Hz. The agreement between simu-
lations and tests is quite good both in amplitude and
frequency (the two signals were numerically phased).
This agreement is confirmed for pitch with wave am-
plitude a= 4 cm, wavelength λw = L and frequency
fw=0.625 Hz.

Figure 4: Heave response of pontoon n. 1.

Figure 5: Pitch response of pontoon n. 1.

Figure 6: Left mooring line response of pontoon n.1.

In order to test the capability of the numerical code
to deal with stochastic seaways, some tests were car-
ried out with irregular waves generated through a Jon-
swap spectrum (H1/3 =4 cm and T1 =1.6 s). Since,
in this case, only a stochastically based comparison
makes sense, the experimental statistical moments ver-
sus those obtained by the numerical simulations are
given. Though the acquired signal lasts only 65 s, the
agreement seems particularly satisfactory since the mo-
ments merge well up to the fourth-order (Experimen-
tal/Numerical, Standard Deviation: 7.10/7.27, Skew-
ness: −0.07/0.09, Curtosis −0.17/−0.28).
The comparison between the recorded cable tension
T and the numerical simulation for the case with in-

coming wave a=4 cm, wavelength λw =2 L and fre-
quency fw=0.425 Hz is shown in Fig. 6. The general
agreement seems good, both in terms of frequency and
amplitude of the tension response. However, a gen-
eral comment is needed concerning some local tension
spikes in the experimental results not sharply shown
by the numerical simulations. The case shows a sin-
gle dominant frequency in the tension response that is
correctly kept by the numerical model, but some spikes
arise in the experiments that are not well reproduced
by the numerical simulation. The experimental spikes
(present also in other other tests not shown for sake
of conciseness) arise when (a) the chain reaches the
condition of ballast lifting, or (b) the spherical linkage
connecting the cells to the pontoon reaches the max-
imum allowed angle, or (c) some of the front and the
side chains of the pontoons intersect. Concerning the
first point, the numerical code includes all the nonlin-
ear effects due to the ballast lifting. This is the rea-
son why also in the numerical simulations spikes arise.
However, a well phased reproduction of the condition
of ballast lifting implies that the chain initial configu-
ration is exactly measured. It is clear how, although
submerged cameras where used in positioning the dead
bodies, it is not an easy task to reproduce exactly the
configuration running on the numerical code. The ef-
fect mentioned at point b) is also included in the nu-
merical model, but, again, it is extremely difficult to
measure the initial chain orientation at the attachment
point. Finally, the collision between chains is not nu-
merically considered, although it seems not to be the
more relevant effect in the spike generation.
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