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Introduction

In this paper we consider solutions at first and second order in the Stokes’ expansion of the velocity potential for
two-dimensional free and forced oscillations of a fluid in a vertically-walled tank having an arbitrary bedform.

Free oscillations, or sloshing, of a fluid in a tank at first order is a classical eigenvalue problem of fluid
mechanics which, despite its long history and the illustrious names involved with it, remains an active area of
research. This is driven by the need to understand when resonance is likely to occur in partially-filled containers
such as fuel tankers. Fox & Kuttler (1983) provide an extensive review of the two-dimensional sloshing problem
and cite many important references on this subject. Under small amplitude external forcing, the first order, or
linear, sloshing frequencies provide a good estimate of when resonance will occur. For larger amplitude forcing,
or when the forcing is close to resonance, non-linear effects undoubtedly play a significant role and there is an
important area of research based on the non-linear and often violent motion that occurs. See, for example,
Faltinsen et al (2000) who use a multi-dimensional modal approach on a generalised domain and surface modes
rather than natural modes. The sloshing problem is also amenable to fully non-linear solvers, see for example
Wu & Eatock Taylor (1994) who apply their finite-element method code to consider the sloshing problem in a
rectangular tank.

In much of the work on sloshing of a fluid in a tank, the base of the tank is taken to be flat. Here, we
consider the case where the bed of the tank can be of arbitrary profile and develop a technique for the first
order problem based on that used by Porter & Porter (2000). Thus, the Green’s function for a flat bed is
used in Green’s identity in conjunction with the Cauchy-Riemann equations to derive integral equations for
functions relating to the tangential flux along the varying bed. Furthermore, we extend the sloshing problem
to second-order, developing a solution technique based in part on the technique used at first order. Although
much more complicated, it is shown that the formulations at both first and second-order are exact although the
integral equations that arise must inevitably be solved numerically and this is achieved using an efficient and
accurate Galerkin method. Numerical results confirm established results for sloshing frequencies at first-order
for specific geometries such as triangular beds and semi-circular troughs.

Formulation of the sloshing problem

Cartesian co-ordinates x, y are chosen with y directed vertically downwards and y = 0 coinciding with the
undisturbed free surface of the fluid. The tank has vertical walls at x = 0, l and the bed, C , is defined by
y = h(x) with the constant depth d defined as d = max{h(x)|x ∈ [0, l]} . We start from the usual form of the
Stokes’ expansion of the velocity potential Φ(x, y, t) up to second order, writing Φ = εΦ1 + ε2Φ2 where ε is
a small parameter and assume a time harmonic variation in the first-order potential of frequency ω , so that

Φ1(x, y, t) = Re
{
φ1(x, y;K)e−iωt

}
(1)

where the frequency parameter is K = ω2/g . Hence φ1 satisfies

∇2φ1 = 0, in the fluid domain, D (2)

∂φ1

∂x
= 0, {x = 0, 0 < y < h(0)} ∪ {x = l, 0 < y < h(l)} (3)

Kφ1 +
∂φ1

∂y
= 0, y = 0, 0 < x < l (4)

∂φ1

∂n
= 0, y = h(x), 0 < x < l. (5)

where ∂/∂n = n.∇ and n is the outward normal on C . The form of the second-order free surface boundary
condition (FSBC) suggests that the second-order potential has the form

Φ2(x, y, t) = Φs(x, y) − Γt+ Re{φ2(x, y)e
−2iωt} (6)

where the steady and double frequency components of the potential, Φs and φ2 , both satisfy Laplace’s equation,
(2) and the zero-flux conditions (3) and (5) on the fixed boundaries. The choice of Γ simply affects the position
of the mean free-surface and is set to a value depending upon φ1 which guarantees mass conservation at
second-order. Furthermore, we are able to deduce from the second order FSBC that Φs = 0 and that

4Kφ2 +
∂φ2

∂y
= g(x) ≡ −

iω

g

{(
∂φ1

∂x

)2

+
3

2
K2φ2

1 +
1

2
φ1

∂2φ1

∂x2

}

y=0

y = 0, 0 < x < l. (7)



In the solution to both the first-order and second-order problems we will make use of a Green’s function,
G(x, y|x0, y0;K) , which satisfies

∇2G = −δ(x− x0)δ(y − y0) (8)

∂G

∂x
= 0, x = 0, l, 0 < y < d (9)

KG+
∂G

∂y
= 0, on y = 0, and

∂G

∂y
= 0, on y = d, (10)

for a rectangular tank with a flat bed and a homogeneous free surface condition. It can be shown that

G(x, y|x0, y0;K) =

∞∑

n=0

ψn(y)ψn(y0)

2knd

{cosh kn(l − |x− x0|) + cosh kn(l − x− x0)}

sinh knl
. (11)

where, for n = 0, 1, 2, . . . ,

ψn(y) = N−1/2
n cos kn(d− y) and Nn = 1

2
{1 + sin(2knd)/2knd} (12)

and we have used kn (n = 1, 2, . . .) to denote the positive real roots of K = −kn tan knd incorporating
k0 = −ik where k is the real root of the dispersion relation K = k tanh kd .

First and second order solutions

Applying Green’s Identity to φ1(x, y;K) and G(x, y|x0, y0;K) in the fluid domain results in

φ1(x0, y0) = −

∫

C

φ1

∂G

∂n
ds. (13)

where s measures the arc length on C , the curve y = h(x) . This integral equation for φ1 can be used
to determine the sloshing frequencies, but we proceed further following Porter & Porter’s (2000) technique of
converting normal derivatives to tangential derivatives by using the following relations

∂

∂s
ψn(y)e±knx = ∓

∂

∂n
χn(y)e±knx and

∂

∂n
ψn(y)e±knx = ±

∂

∂s
χn(y)e±knx, (14)

where ∂/∂s = s.∇ and s is the unit vector tangential to the curve C and χn(y) = N
−1/2
n sin kn(d − y) .

The relations (14) are in effect Cauchy-Riemann relations and are thus restricted in their application to two-
dimensional problems. Using these relations we deduce that

∂2G

∂n∂n0

= −
∂2H

∂s∂s0

where

H(x, y|x0, y0;K) =
∞∑

n=0

χn(y)χn(y0)

2knd

{cosh kn(l − |x− x0|) − cosh kn(l − x− x0)}

sinh knl
. (15)

We can now derive an alternative integral equation by differentiating (13) with respect to n0 and noting that
this derivative vanishes on y0 = h(x0) . We convert normal to tangential derivatives and after performing
integration by parts, noting that φ1 → 0 as (x, y) → (0, h(0)), (l, h(l)) to eliminate free terms and eventually
obtain ∫

C

H
∂φ1

∂s
ds = 0. (16)

After changing variables from s to x , we have

∫ l

0

m(x0, x;K)q1(x) dx = 0, 0 < x0 < l (17)

where m(x0, x;K) = H(x, h(x)|x0, h(x0);K) and q1(x) is a function which is proportional to the tangential
flux of the fluid along the curve C . Non-trivial solutions of this homogeneous first kind integral equation furnish
the sloshing frequencies, ω for the tank containing the particular bed shape y = h(x) and the corresponding
eigenfunction q1(x) .

To make progress at second order we note from (7) that φ1 and its derivatives are required on y = 0 .
We therefore proceed to find the general form of φ1 everywhere in D and, in particular, its value on the
free-surface, y = 0 . We now use equations (14) to write

∂

∂n
G(x, y|x0, y0;K) =

∂

∂s
L(x, y|x0, y0;K)



where L is readily obtained as a series and, on performing an integration by parts of equation (13), it becomes

φ1(x0, y0) =

∫ l

0

L(x, h(x)|x0, y0;K)q1(x) dx, (x0, y0) ∈ D (18)

after a careful treatment of the discontinuity in the function L . In particular, this equation applies on y = 0
and thus provides a means of computing φ1(x0, 0) given the eigenfunction q1(x) .

To make progress with the solution to the boundary-value problem for φ2 , we make use of the linearity of
the governing equations for φ2 , writing φ2 = ξ1 + ξ2 where ξi , i = 1, 2 both satisfy (2) and (3), whilst ξ1
satisfies

∂ξ1
∂y

= 0, on y = d , and 4Kξ1 +
∂ξ1
∂y

= g(x), on y = 0 (19)

and ξ2 satisfies

∂ξ2
∂n

= −
∂ξ1
∂n

, on y = h(x) , and 4Kξ2 +
∂ξ2
∂y

= 0, on y = 0. (20)

The decomposition of φ2 into ξ1 and ξ2 allows the two sources of complication, namely the FSBC and the bed
condition to be divided between two separate problems. The solution for ξ1 is easily found using separation of
variables to be

ξ1 =
∞∑

r=0

Ar coshµr(d− y) cosµrx, where µr = rπ/l (21)

for coefficients Ar that are determined by satisfaction of (19b). The problem for ξ2 , satisfying the homogeneous
boundary condition on y = 0 can be approached using Green’s Identity with G(x, y|x0, y0; 4K) to obtain

ξ2(x0, y0) = −

∫

C

(
ξ2(x, y)

∂G(4K)

∂n
+G(4K)

∂ξ1
∂n

)
ds. (22)

We follow exactly the same procedure as before, namely differentiating with respect to n0 , integrating by parts
and converting to tangential derivatives and apply the bed condition on ξ2 . The bed condition is simplified by
noting that

∂ξ1
∂n

= −
∂f

∂s
where f(x, y) =

∞∑

r=1

Ar sinhµr(d− y) sinµrx (23)

and where, after some manipulation, we may write the integral equation at second-order in the form

p(x0) +

∫ l

0

L(x, h(x)|x0, h(x0); 4K)p′(x) dx = −

∫ l

0

m(x, x0; 4K)q2(x) dx. (24)

where p(x) = f(x, h(x)). This integral equation for the function q2(x) relating to a tangential flux along
C , has the same kernel as in (17) but operating at 4K , and inhomogeneous terms that relate through the
coefficients Ar in f(x, h(x)) to the first order eigenfunction. Once q2(x) is known, a procedure similar to that
at first order can be used to determine ξ2 everywhere and, in particular,

ξ2(x0, 0) =

∫ l

0

L(x, h(x)|x0, 0; 4K)q2(x) dx−

∫ l

0

G(x, h(x)|x0, 0; 4K)p′(x) dx. (25)

This information allows us to be able to calculate the second-order free surface elevation.

Approximation and numerical method

Although our formulation of the problem so far is exact we must resort to numerical techniques to generate
results. We solve the integral equation (17) numerically by using a Galerkin method where we approximate
q1(x) by

q1(x) ' q̃1(x) ≡
N∑

n=1

anvn(x), with vn(x) = (1/l) sin(µnx) wwhere µn = nπ/l (26)

and vn(x) are chosen to reflect the anticipated local behaviour at x = 0, l . Thus, substituting (26) in (17),
multiplying through by vm(x0) , m = 1, . . . , N and integrating over 0 < x0 < l results in an N × N linear
system of equations for an . Typically, values of N = 8 are needed for convergence to six decimal places. On
account of the wall conditions, (3) we expand φ1(x, 0) in terms of a cosine series

φ1(x, 0) =

N∑

n=1

bn cos(µnx) (27)
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Figure 1: Sloshing frequencies for the first two modes (normalised with respect to the flat bed frequency) over
a triangular bed making an angle of π/n with the horizontal bed and intercepting the vertical axes at y = a

and it turns out that bn can be efficiently calculated in terms of an . Furthermore, it can be shown that

Ar =
−iωsechurd

4gl2(4K − µr tanhµrd)

{
r∑

n=0

bnbr−n(3K2l2 + π2n(n− 2r))+
εr
2

N−r∑

n=0

bnbn+r(6K
2l2 + π2(2n2 + 2nr + l2))

}

the rather simple calculation which represents the point at which non-linearity in the free surface condition
is transferred to the second order potential. An identical approximation to (26) is taken for q2(x) and the
Galerkin procedure described above is used to determine the second order solution.

We present results at Figure 1 showing how this approach may be used to calculate sloshing frequencies.
It can easily be seen that the frequencies are monotonic decreasing as expected from Fox & Kuttler (1983). It
also serves to confirm that the formulation reproduces the known analytical results for the cases n = 4 and
n = 6 for a = 0 , corresponding to sloshing in triangular canals.

Forced Oscillations

The techniques for free oscillations may be extended to a tank forced at frequencies away from resonance.
The situation of interest is where the tank is forced laterally with amplitude a where a/l = ε � 1 and
frequency σ 6= ω , the sloshing frequency, where we now write Φ1 = Re{φ1e

−iσt} and consequently obtain a
second-order potential composed of steady and double frequency components. For this problem the first and
second-order potentials still satisfy Laplace’s equation and the FSBC’s remain unchanged however the fixed
boundary conditions require modification as below

Linear 2nd Order Steady 2nd Order 2σ

∂φ1

∂x
= σ

∂Φs

∂x
= 0

∂φ2

∂x
= 0 on x = 0, l

∂φ1

∂n
= −n.∇σx

∂Φs

∂n
= Ns(x)

∂φ2

∂n
= N(x) on y = h(x).

(28)

Here Ns(x) and N(x) are the steady and double frequency components respectively of the normal derivative
of the second order potential which depend upon φ1 and its derivatives on the bed. Progress may be made
if we transform the first order problem using φ1 = x + ϕ1 in which case the conditions for ϕ1 on the fixed
boundaries become homogeneous, as in the free sloshing problem, but at the expense of complicating the FSBC.
Nevertheless, the technique outlined in this paper can be used to obtain an inhomogeneous integral equation
which is straightfoward to solve for numerically. The transformation of the first-order problem modifies the
expressions for Fs(x) , F (x) , Ns(x) and N(x) in the second-order problem but without introducing additional
complexity. Accordingly our methods, including decomposition of the problem, may be applied at second-order.
Work on the second-order forced problem is currently in progress and we hope to be able to report results on
this problem at the workshop.
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Discusser: M. McIver
In your abstract you say that ϕ1 → 0 as (x, y)→ (0, h(0)), (L, h(L)). Surely, this will

not be true in general.

Author’s reply:
Yes, of course you are correct as ϕ1 → const.. This was changed in the presentation

as it is not crucial to the method. In fact, if you take the limit x→ 0, 1 before integrating
by parts, the free terms vanish without requiring ϕ1 → 0.


