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1 Introduction

To protect the islands in the Venice Lagoon against frequent flooding by storm tides from Adriatic Sea,
four flood barriers have been designed for the four inlets along the outer islands (Chioggia, Malamocco,
Lido-Triporti and Lido-Saint Nicolo). Each barrier consists of a series of 19 or 20 hollow gates which are
closely aligned and hinged along a common axis fixed at the seabed, and are not connected otherwise. Each
gate is a hollow box about 20 m long and 4 ∼ 5 m thick; its height ranges from 14 m to 25 m depending
on the local depth of the inlet. In calm weather, all gates will be filled with enough water and lowered into
their housings on the seabed so as to allow normal shipping traffic. Before a storm, the gates will be raised,
by compressing air into the hollow chambers, to an inclination of 40◦ ∼ 50◦, and act together as a dam to
maintain a water-level difference up to 2 m. In order to minimize the wave force tranmitted to the relatively
soft seabed, all gates will be allowed to swing to and fro. Guided by long and parallel jetties normal to the
coast, waves are expected to approach each barrier normally, and all gates are expected to oscillate in unison
and keep out the high water during the storm (estimated to be 4.5 ∼ 5 hours).

For the multi-gate system, experiments either in a long wave flume or a rectangular basin of finite width
have revealed an unexpected phenomenon (Consorzio Venezia Nuova Report, 1988). The gates spanning
across the full width of the flume or basin were excited by normally incident long-crested waves of a single
frequency. It was found that at certain frequency ω the neighboring gates oscillate in opposite phase at the
frequencies ω/2. The physical source of resonance has been identified by Mei et al.,(1994) who used the
simplified model of vertical gates. In particular, the observed resonance has been shown to be an eigenmode
with energy trapped near the barrier, similar to edge waves on a sloping beach. The phenomenon here owes
its origin to the articulated structure, and is somewhat different from wave trapping on a sloping beach or
around periodic and rigid bodies (Evans & Linton, 1997, etc.). Later, nonlinear theories have been developed
by Sammarco, et al. (1997a,b) for the forced oscillation of vertical gates due to incident waves of twice the
frequency, only for the severest mode where each gate moves in opposite phase with its immediate neighbors.
For inclined gates in housings of complex geometry, a numerical treatment based on the hybrid finite element
method has been developed by Liao & Mei (2000) to predict the two most severe eigenmodes.

Near the Venice inlets incident waves are guided by a pair of long jetties only on the seaward (Adriatic)
side, and transmitted waves are radiated to the open space in the Lagoon, much like a two-dimensional horn.
Radiation damping must therefore be present, and should enable resonance of an eigenmode linearly by
incident waves of the same frequency, similar to the resonant scattering by a harbor with a narrow entrance.
In this presentation we first extend the earlier theory to predict trapped modes along a long barrier consisting
of arbitrarily many identical vertical gates across the middle of an infinitely long channel (Li & Mei, 2004).
It is found that the modal profile is the discrete substitute of a cosine curve. hence the eigenfrequency can
be solved simply from the dynamics of one gate within a modal wavelength. Different eigenmodes are found
by requiring that an integral number of half cosine curves are fitted along the barrier.

We then develop a linearized theory for the gate responses due a monochromatic incident wave (Adamo
& Mei 2004). An energy identity is derived to provide a global check for numerical computations. Gate
responses are first carried out for a wide range of incident wave frequencies. Resonances are found at
frequencies close to the natural frequencies predicted recently by Li & Mei (2003). Responses to random
incident waves described by JONSWAP spectrum are discussed.

2 Trapped modes along a barrier of finite length

We consider a channel of rectangular cross-section, of width L and depth h. N identical gates with negligible
gaps are hinged at the bottom along a transverse axis at x = −0, z = −h. By using eigen-function expansions
the velocity potential on both sides of the vertical barrier x = ±b are easily found. Their values on one side
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To exclude propagating modes the constants βm0 must be real so that all terms decay exponentially with
|x|. Specifically, if k < π/L, all terms in (2.1) are kept. If π/L < k < 2π/L, the term associated with β10

is excluded. If 2π/L < k < 3π/L, the term associated with β10 and β20 are excluded. If Mπ/L < k <
(M + 1)π/L, terms associated with β10, β20, β30, ...βM0 are excluded.

Invoking the equation of motion for gate j we again get the homogeneous matrix equation for {θj},

−ω2Iθj + Cθj − Fjpθp = 0, j = 1, 2, 3, ...N ; (2.3)
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Again in the m− series in (2.4) includes only terms with real βm0.
In principle, the unknown eigenfrequencies ω are determined by equating the coefficient determinant of

(2.3) to zero; this amounts to applying the condition (2.3) on half of N gates (half because of symmetry).
We however find a simpler method by assuming first that each eigenmode is the discrete substitute of the
cosine curve cos(2Kπy/L), provided that 2K is an integer so that there are K half-modal wavelengths across
the channel. Equivalently, 2Kπ/L is the model wavenumber in the range (0, L). In particular the rotation
amplitude of gate j is
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where θo is an arbitrary constant. With this, one can calculate the eigen-frequency ω by satisfying (2.3) on
any single gate j.

For a 20-gate barrier with the gate dimensions comparable to those for the Malamocco Inlet, the dispersion
relation between eigen-frequency and the modal wave number or period is shown in Figure 2 for both odd
N1,N3, ...N19 and even N2,N4, ...N18 modes.

The modal shapes of all even modes N2,N4, ... which can be resonated by normally incident sea will be
shown at the presentation.

3 Single-frequency excitation of a 20-gate barrier

We idealize the inlet system as a long channel open to a semi-infinite water body, with the barrier spanning
across the junction. The velocity potentials in the channel on the Adriatic side is the sum of a diffraction
problem and N radiation problems Φ− = ΦD +

∑
α Ωαφ−

α , where ΦD = ΦI + ΦR, where Ωα = −iωθα

denotes the angular velocity amplitude of gate α. All the normalized φ−
α can be solved by eigenfunction

expansions. On the lagoon side only the radiated waves are present, Φ+ =
∑

α Ωαφ+
α where the normalized

radiation potentials φ+
α can be solved by using a Green function.

The angular displcements are then solved from the laws of the conservation of angular momentum

−ω2Iθα + Cθα = −iωρ

∫∫

Sα

(Φ+ − Φ−)(z + h)dS (3.1)
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Figure 1: Dispersion relationship for all eigenmodes in a barrier of 20 gates. In the sequence from low to
high frequencies, dots correspond to Modes N1,N2, ...N19.

where I is the moment of inertia of each gate about the bottom hinge. In the prototype the gates are hollow;
the inertia I and buoyancy torque C can be determined by measurements; they are assumed to be given
here.

For a single floating body in simple harmonic waves there exist many general identities derived by means
of Green’s theorem (see e.g., Mei 1989). Similar results have been derived for the multi-gate inlet system.
For example, the identity on energy conservation is,
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where αm0, A
(0)
mn and A(0) are analytically known coefficients. This identity relates all the gate displacements,

and is used as a global check of the correctness of the computation.
Extensive computations have been carried out for all gate responses for incident wave frequencies from

ω = 1.6−0.10 1/sec (periods from 4 to 60 seconds). Resonance occurs at nine different frequencioes (periods)
all of which are very close to the natural frequencies (periods) of the trapped modes which are symmetric
with respect to the centerline of the inlet.

4 Response to random incident waves

We assume the incident waves to be a stationary random process with Spectrum SII (ω). The response
spectrum Sαα of gate α is computed from,

Sαα =
|θα|2

A2
SII (4.1)

from which the mean-square displacement of gate α can be obtained.
Based on oceanographic records, it has been estimated by Technital Inc., Milan, that the peak periods

of Adriatic sea spectra lie between 5.5 sec to 9.8 sec (ω = 1.14 to 0.64 rad/sec.). For the present design,
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Figure 2: Response spectra of gate 5, (in rad2s) and the sea spectrum SII (in m2s). Left: Tp =9.8 sec. Right:

Tp = 12.25s

the most undesirable mode has the shortest natural period around 12 seconds (ω = 0.512 rad/sec). The
statistical likelihood of a sea spectrum with such a long period is estimated to be very low (once in 1000
years).

To provide some preliminary information for assessing the current design, we describe sample predictions
based on the present simple model. Results for two incident wave spectra in JONSWAP form will be
presented: one with Tp = 9.8 sec (ωp =0.64 rad/sec) which is the longest estimated by Technital, the
other with the practically improbable Tp = 12.25 sec. (ωp =0.512 rad/sec). which coincides with the most
undesirable trapped mode. The RMS wave height is assumed to be the same : 2.5 m. For each input the
spectra and the root-mean-square (RMS) of the gate dispacement are calculated for each gate.

Typical gate response spectra are compared for the two peak frequencies in Figure 2,
We also define the cumulative spectrum by the integral

Cum S(ω) =
∫ ω

0

Sαα(ω)dω (4.2)

A sudden jump of the cumulative spectrum corresponds to the exclusive contribution by a resonance peak
in the single frequency response. The cumulative spectra of all gates are shown in Figure 3. Sudden jumps
are clearly seen near ωp = 0.512 1/sec which corresponds to the most dangerous mode. From the limit of
large ω, the RMS displacements for half of the gates are found.

For Tp = 9.8 sec., the resonance peaks of all gates are low. Contributed by all frequencies, gate 5 has the
largest RMS displacement of all gates. It cumulative spetrum has the largest jump at ωp = 0.512 1/sec. Since
the jump is about 1/3 of the total, the root-mean square amplitude of mode N18 is roughly 0.120/

√
3 = 0.069

radian = 3.97 degrees. This is likely too small to cause significant separation of neighboring gates.
For Tp = 12.25 sec., the resonance peaks of all gates are much higher. Gate 5 has of course the largest RMS

displacement equal to 0.295 radian= 16.9 degrees. Since the jump of cumulative spectrum at ωp = 0.5129
/s contributes nearly a half of the total, the RMS amplitude associated with the most undesirable mode
N18 is roughly 16.9/

√
2=11.7 degrees. For absolute safety, the gate dimensions and design can certainly be

modified to reduce the danger of this most detrimental mode.

5 Conclusions

Although the amplification at resonance frequencies according to our linearized single-frequency theories is
very high so that nonlinearity should be included in principle, the results for random incident waves are
reasonable and indicate that the worse-case scenario is still mangeable, and can be taken care of by the
designers without fundamental changes.

For more refined guidance of design and future operations of the barriers, further studies accounting
for gate inclination, nonlinearity, vortex shedding , finite inlet jetties and local bathymetry are useful. In
particular, the narrow resonant peaks in the single-frequency responses indicate that radiation damping due
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Figure 3: Cumulative response spectra of gates 1-5. Left:Tp=9.8 sec. Right: Tp=12.25 sec.

to the open space on the lagoon side is not very small. It then follows that the mechanism studied before by
Sammarco et al (1997 a,b) may be effective so that spectra with peak period near 5 to 6 sec. can still induce
subharmonic resonance nonlinearly. A new nonlinear theory accounting for the open space in the lagoon is
needed and will be reported in the future.
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