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1 Introduction
In linear water-wave theory the wave potential for a semicircle oscillating on fluid of infinite depth has long been
familiar. Thus for a heaving semicircle the potential can be expressed as the sum of an oscillating wave source
in the free surface, together with an infinite series of symmetrical wavefree potentials. Similar considerations
evidently apply when an arbitrary normal velocity is prescribed on the surface of the semicircle. In general the
expansion then includes a horizontal wave dipole and antisymmetric wavefree potentials as well as the symmet-
rical terms described above.The wave amplitude at infinity is determined by the magnitudes of the wave source
and of the wave dipole. For motions without waves at infinity the potential is regular harmonic at infinity.

In the present work we shall consider analogous problems for the hemisphere with its centre in the mean
free surface. The wave motion generated by a heaving hemisphere has been treated by [Havelock 1955], the
potential is the sum of a wave source in the free surface and of wavefree potentials. Here we shall consider the
analytic form of the potential when an arbitrary normal velocity is prescribed on the surface of the hemisphere.
Evidently the potential can then be expressed as the sum of Fourier components about the vertical axis of sym-
metry, and we shall see that the mth Fourier component can be expressed as the sum of the mth order multipole
and of the appropriate set of wavefree potentials. Here we shall derive the analytic form of the wave potential.
Cartesian axes are taken with the y−axis vertical and the origin in the mean free surface . The three-dimensional
potential φ(x, y, z) exp(−iωt) is defined in the region outside the hemisphere (S+

a : x2 + y2 + z2 = a2, y > 0),
where it satisfies (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ(x, y, z) = 0, (1.1)

with the boundary condition

Kφ +
∂φ

∂y
= 0 when y = 0, x2 + z2 > a2, (1.2)

where K = ω2/g. It is assumed that at infinity the resulting waves travel outwards. Cylindrical polar coordi-
nates (r, y, α) are taken such that x = r cos α and z = r sin α, and spherical polar coordinates (R, θ, α) are taken
such that x = R sin θ cos α, y = R cos θ, z = R sin θ sin α. Let L > a denote any length exceeding the radius of
the hemisphere. Our principal result is

Theorem 1 :

φ(x, y, z) =

∞∑
m=0

(Am cos mα + Bm sin mα) φm(r, y),

where

φm = α0mLm+1

∫ ∞

0

km+1

k −K
e−kyJm(kr) dk (1.3)

+

∞∑
σ=1

ασm

(
(2σ + 2)

Pm
m+2σ+2(cos θ)

Rm+2σ+3
+ K

Pm
m+2σ+1(cos θ)

Rm+2σ+2

)
Lm+2σ+3

(
(2σ + 2)!

(2m + 2σ + 2)!

)1/2

,

(1.4)



where it is supposed that the path of integration in (1.3) passes below the pole k = K. (The same assumption

will be made throughout this paper for all integrals with a polar singularity at k = K.)

We observe that the wave motion at infinity is contributed by the integral (1.3); when this term is absent

the potential at infinity is represented by the wavefree potentials (1.4) and is regular harmonic. We shall also

obtain the expansion of the wave term (1.3) near the origin. It will be shown that

∫ ∞

0

km+1

k −K
e−kyJm(kr) dk

= Km+1
m∑

s=0

P−m
m−s(cos θ)

(KR)m+1−sΓ(2m + 1− s)
+ Km+1

m−1∑
s=0

(KR)sP−m
s (cos θ)

Γ(m− s)
.

− 2πiKm+1
∞∑

N=0

∂

∂N

{
e−πiN (KR)m+N

Γ(N + 1)
P−m

m+N (cos θ)
}

. (1.5)

2 Proof of Theorem 1
Only a brief outline can be given here. We begin by considering

Φm(R, θ) = Φm(r, y) =

(
K +

∂

∂y

)
φm(r, y),

for which there is an expansion of the form

Φm(R, θ) =

∞∑
s=0

a2s

(
L

R

)m+2s+2

Pm
m+2s+1(cos θ)

(
(2s + 1)!

(2m + 2s + 1)!

)1/2

. (2.1)

To obtain this expansion, we use the property that Φm(r, 0) = 0, see (1.2), from which it follows that Φm can
be continued by Schwarz’s Symmetry Principle Φm(r, y) = −Φm(r,−y) into the mirror image of its original
region of definition, and is thus defined in the region (D±L : x2 + y2 + z2 > L2,−∞ < y < ∞) external to the

sphere of radius L. It is evident that Φm(R, θ) is bounded in the region D±L : the expansion (2.1) follows almost
immediately by separation of variables. We can now proceed to the proof of Theorem 1. We note the integral
([Erdélyi 1953], Vol 2, 7.8(10))

Γ(ν + m + 1) P−m
ν (cos θ) =

∫ ∞

0

e−T cos θJm(T sin θ) T ν dT, (2.2)

valid when ν + m + 1 > 0, where ([Erdélyi 1953], Vol 1, 3.4(6))

P−m
ν (ξ) =

1

Γ(m + 1)

(
1− ξ

1 + ξ

) 1
2 m

F (−ν, 1 + ν; m + 1;
1
2 −

1
2 ξ),

in the standard notation of hypergeometric functions. It follows that

Pm
m+2s+1(cos θ)

Rm+2s+2
=

(−1)m

(2s + 1)!

∫ ∞

0

km+2s+1e−kyJm(kr) dk when y > 0. (2.3)

Thus, when y > 0, we see that (2.1) is the differential equation(
K +

∂

∂y

)
φm(r, y) = (−1)m

∞∑
s=0

a2sLm+2s+2

{(2s + 1)!(2m + 2s + 1)!}1/2

∫ ∞

0

km+2s+1e−kyJm(kr) dk. (2.4)



When r > L, one solution of this equation is given by φ†m(r, y), where

(−1)m−1φ†m(r, y) =

∞∑
s=0

a2sLm+2s+2

{(2s + 1)!(2m + 2s + 1)!}1/2

∫ ∞

0

km+2s+1e−kyJm(kr)
dk

k −K
. (2.5)

Since
k2s

k −K
=

K2s

k −K
+ (k + K)(k2s−2 + k2s−4K2 + · · ·+ K2s−2), (2.6)

we see that the expansion (1.3)-(1.4) follows at once, when we note that

1

(2S + 1)!

∫ ∞

0

(k + K)km+2S+1e−kyJm(kr) dk (2.7)

= (−1)m

(
(2S + 2)

Pm
m+2S+2(cos θ)

Rm+2S+3
+ K

Pm
m+2S+1(cos θ)

Rm+2S+2

)
(2.8)

from (2.3). It is also easily seen that this expansion is the only solution of (2.4) satisfying the radiation condition
at infinity, that (2.8) is a wavefree potential satisfying (1.2) , and that the expansion (1.3) - (1.4) is convergent
since the expansion (2.1) is convergent.

It remains to discuss the contribution (1.3), which is a multiple of the integral∫ ∞

0

km+1e−kyJm(kr)
dk

k −K
, (2.9)

where the path of integration passes below the pole k = K. By deforming the contour it is not difficult to show
that this behaves like a wave for large r. To find the expansion in spherical polar coordinates for small r we
write

km+1

k −K
= km

(
1 +

K

k
+

K2

k2
+ · · ·+

K2m

k2m

)
(2.10)

+
K2m+1

km(k −K)
. (2.11)

We recall the integral (2.2), valid when ν + m + 1 > 0. ( Here m is an integer and ν is real.) Thus the finite
series (2.10) gives a contribution

= Km+1

m∑
s=0

P−m
m−s(cos θ)

(KR)m+1−sΓ(2m + 1− s)
+ Km+1

m−1∑
s=0

(KR)sP−m
s (cos θ)

Γ(m− s)
.

(2.12)

Evidently the integral (2.2) can be transformed into the loop integral

(e2πiν − 1)Γ(ν + m + 1)P−m
ν (cos θ) =

∫ (0+)

∞
e−T cos θJm(T sin θ) T ν dT, (2.13)

where the path of integration starts at ∞, encircles the origin in the positive direction, and ends at ∞e2πi; this
is valid for all real ν. Similarly the term (2.11) gives the integral

K2m+1

∫ ∞

0

e−kyJm(kr)
dk

km(k −K)
=

1

2πi
K2m+1

∫ (0+)

∞
e−kyJm(kr) log

k

K

dk

km(k −K)
,

(2.14)

where both branches of the path of integration pass below the pole k = K . We now deform the upper branch
to pass above k = K, this does not change the value of the integral because log k/K vanishes at k = K. We



next deform the new path of integration to lie outside the circle |k| = K, and thus the expression (2.14) can be
written as the series

1

2πi
K2m+1

∫ (0+)

∞
e−ky Jm(kr)

km+1
log

k

K

∞∑
N=0

(
K

k

)N

dk. (2.15)

=
1

2πi
K

∞∑
N=0

∫ (0+)

∞
e−KRu cos θJm(KRu sin θ) log u

du

uN+m+1
(2.16)

=
1

2πi
K

∞∑
N=0

∂

∂ν

(
(e2πiν − 1)Γ(ν + m + 1)

P−m
ν (cos θ)

(KR)ν+1

)
, (2.17)

where ν = −N −m− 1. By using the relations

e2πiν − 1 = 2ieπiν sin πν, Γ(Z)Γ(1− Z) = π/ sin πZ (2.18)

it is then not difficult to obtain the expansion (1.5). It should be noted that the expansion for the case m = 0
can be treated more simply: when the expansion of φ0 along the y-axis is known the complete expansion can
be at once inferred. When m > 0 the potentials φm vanish on the y-axis and the simple argument is no longer
available.

3 Discussion
In two dimensions it has long been known ([Ursell 1968]) that the velocity potential can be continued into the
whole of the upper half-plane outside a large circle, with a cut to infinity along an arbitrary vertical line. For
by Schwarz’s Symmetry Principle the boundary condition (1.2) gives the continuation of Kφ + φy into the

upper half-plane outside the large circle (C±L : x2 + y2 > L2), and integration in the y-direction then gives

the continuation of φ(x, y) into the part of C±L outside the vertical strip (−L < x < L). Then φ(x, y) can be
extended horizontally from this domain into the vertical strip by solving the equation(

∂2

∂x2
+ K2

)
φ(x, y) = −

(
∂

∂y
−K

)(
Kφ +

∂φ

∂y

)
,

where the right-hand side is known in the whole of C±L , since Kφ + φy is known in the whole of C±L . This
procedure gives φ(x, y) outside a large circle, with a cut along an arbitrary vertical line. Across the vertical line
the discontinuities of the potential and of the normal gradient are found to be simply related to the waves at
either infinity; in particular,when there are no waves at infinity the cut is absent, and the point at infinity is
then a regular point. (A simpler argument using complex potentials was given earlier in [Ursell 1950].)

In the present note we have treated the corresponding problem in three dimensions. The analytic continu-
ation into the upper half-space by means of (1.2) now excludes a vertical cylinder, but in general the excluded
volume cannot be contracted to a single vertical line. This is readily seen if we consider a potential generated
by a finite number of wave sources. In the upper half-space this potential is singular (not merely discontinuous)
on the vertical lines through the sources, and clearly these singular lines cannot be combined into one singular
line. However, when the potential is resolved into Fourier components about a vertical axis, then (as follows
from Theorem 1) each Fourier component φm(R, cos θ) exp(±imα) can be continued into the upper half-space
as far as the axis which is a line of singularities . When there are no waves at infinity the first term (1.3) is
therefore absent, and the potential is then regular at the point at infinity and can be expressed as the sum of
single-valued spherical harmonics R−n−1Pm

n (cos θ) exp(±imα) outside a large sphere, see(2.8).
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