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Figure 1: Close-up of the cell labeling at the wave surface.

Abstract

To model realistic inflow conditions for green water simula-
tions, a free floating ship in a non–linear realistic wave field
should be modeled. First the extension of the numerical tool
with a realistic wave field is investigated. The simulation of
non–linear realistic waves in the VOF code is investigated
with special attention to the artificial boundaries used to
limit the computational domain.

Boundary conditions

For the discretisation of Laplace all velocities on the cell
faces has to be known. Therefore, the FB-velocities need
to be prescribed. For the discretisation of momentum equa-
tion , not only the FB-velocities, but also the SB-velocities,
BB-velocities, the SE-velocities and the EE-velocities ad-
jacent to a SS-velocity need to be prescribed. Further, the
pressures on either side of the velocity around which the mo-
mentum equation is discretised, is needed. This means that
to discretise the momentum equation around FS- and SS-
velocities the pressure in the S-cells needs to be prescribed.

The FB-, SB- and the BB-velocities are prescribe us-
ing the no-slip or free-slip conditions on solid boundaries.
When the boundary acts as an artificial boundary it should
also prescribe the FB-, SB- and the BB-velocities, this is
discussed in the next section.

The SE-velocities and the EE-velocities adjacent to a
SS-velocities and the pressure in S-cells are prescribed us-
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ing the free surface conditions. The EE-velocities are pre-
scribed using the surface stresses. In 2D this equation is
simplified to:

µ

(

∂ux

∂z
+

∂ux

∂z

)

= 0 (1)

assuming a either horizontal or vertical surface. The SE-
velocities are in general prescribe by applying conservation
of mass in the S-cell. When two SE-velocities occur around
one S-cell, conservation of mass is required in each direction
separately. During the accuracy tests for wave simulation
this was found to be introducing inaccuracies. A little slop-
ing surface like the surface of a ocean wave, cause a staircase
like S-cell pattern, see Fig. 1. Besides vertical SE-velocities,
this also cause some horizontal SE-velocities. Here there
are two SE-velocities in around one S-cell (marked with *
in Fig. 1), thus in this case where no cut-cells are present,
both SE-velocities are set equal to the opposite velocity.
This means both ∂ux

∂x
= 0 and ∂ux

∂x
= 0. However in the

steepest part of the wave where this is likely to happen,
∂ux

∂x
is not equal to zero but at it’s maximum. This error is

circumvented by prescribing the horizontal SE-velocities in
wave simulations the same way the EE-velocities are pre-
scribed. This implies the assumption of a more or less hor-
izontal surface.

Simulating a Wave Field

To extend the current model for numerical green water sim-
ulations with a wave field, first the capabilities of Comflo to
simulate a non–linear realistic wave field accurately without
the presence of an object is investigated. The propagation
of the waves inside the computational domain is important,
but also the influence of the boundaries are investigated.

Accuracy of the Simulations

To get an idea of the accuracy and the required grid reso-
lution and time step for wave simulations a series of com-
putations is performed. Regular waves are simulated by
prescribing the velocities at the boundaries using the non-
linear potential theory of Rienecker-Fenton, [1] see the next
section. A 2D domain of 2 wavelengths is used, the wave ele-
vation is determined in middle of the domain and compared
with the Rienecker-Fenton results over two wave periods.
In other computations it was found that a grid aspect ra-
tio, ∆z/∆x, (much) different from 1.0, can cause wiggles for
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Figure 2: Influence of grid resolution and timestep on the
accuracy of wave simulations, wave steepness H/λ = 0.02

steep waves. Therefore, the grid aspect ratio is kept equal
to 1.0.

In Fig. 2 the maximum error found by comparing the
time traces of the numerical simulation and the Rienecker-
Fenton theory is plotted for different grid resolutions and
time steps. These results are obtain for a wave with steep-
ness H/λ = 0.02. Clearly the error is linear depending on
the timestep up to a point were the spatial discretisation
error is more important, then the time step refinement has
almost no influence anymore. For steeper waves the general
behaviour of the error is the same. However, the graphs
are shifted towards a finer grid. For the same accuracy of
the simulation of a steeper wave approximately the same
amount of time steps can be used, but more grid cells are
necessary. This is probably due to the fact that nonlinear
wave components with the same period but a halved or even
less wave length are larger.In table the optimum choice of
parameters for an error of 1% of the waveheight is given for
different wave steepness. It also gives the computation time
on a 500 MHz PC per wave length and per wave period,
which drastically increases for steeper waves.

H/λ ∆t/T ∆x/λ comp. time [min]
0.02 0.004 0.025 0.4
0.04 0.004 0.0125 1.4
0.06 0.004 0.0083 4.3
0.08 0.003 0.0063 11.3
0.10 0.0015 0.005 26.4

Table 1: ’Optimum’ choice of parameters for an allowed
error of 1% of the wave height and computational time per
wave length and wave period.

Artificial Boundaries

To limit the computational domain, artificial boundaries are
introduced. When the artificial boundary acts as an inflow
boundary the velocities of the incoming wave field should be
prescribed to the computational domain. When the artificial
boundary acts as an outflow boundary, it should absorb the
outgoing waves as if no boundary is present. Two absorbing
methods are presented here, the Sommerfeld condition and
an absorbing damping zone. Often the inflow also acts as an
outflow boundary for reflected or diffracted waves. In this
case the in- and outflow conditions should be combined. The
possibilities to remove the artificial boundaries by coupling
the computational domain with the outer domain, while the
solution in the outer domain is computed using a potential
code is also investigated.

Inflow Condition

At the inflow boundary the incoming wave should be pre-
scribed by prescribing the velocity profile of the wave at
the boundary. Hereto a good description of the incoming
wave is necessary. For low amplitude waves, both regular
and irregular, the Airy linear potential wave theory provides
an accurate description. Using a linear theory implies that
the velocity profile is only computed up to the calm water
level. In the nonlinear VOF code the velocities need to be
prescribed up to the actual surface level. To overcome this
problem a profile stretching method is used. It was found
that simply extrapolate the linear profile up to the actual
surface level worked well. An alternative method is Wheeler
stretching, [3], which stretches or compresses the velocity
profile from the calm water level to the actual surface level.

When the wave steepness increases nonlinear effect cause
deviations from the linear theory. At a wave steepness of
H/λ = 0.02 deviations in the surface elevation are already
about 3% of the wave amplitude. For accurate wave simu-
lations a nonlinear description of the incoming wave should
be used. Rienecker and Fenton provided a relatively simple
method to get a nonlinear potential description of a regu-
lar wave in any water depth by means of a Fourier series
of the stream function.. This is a very suitable method for
regular nonlinear waves. For irregular nonlinear waves no
analytical description can be given. In this case the velocity
profile at the boundary during the simulated time is com-
puted using a nonlinear potential code based on the Finite
Element Method (FEM). First the full domain is computed
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Figure 3: Position time plot of the results of the nonlinear
FEM code Hubris and the VOF-code Comflo initiated by
Hubris on t = 100s and driven by Hubris on x = 100m.

by the FEM code, the results on t = 100s and on x = 100m
are prescribed to the VOF code. Comparison at x = 250m
and at t = 140s shows no large discrepancies exist between
the solution of the FEM-code and of the VOF-code driven
by the FEM-code. The same check is performed for the
FEM-code driven by the VOF-code on x = 100m (in this
case no initial condition) by prescribing the time derivative
of the potential on the boundary. The results of this check
encourages future investigation of an interactive coupling
so the potential FEM-code can also be used as an outflow
boundary.

Sommerfeld Condition

A well known outflow condition is the Sommerfeld condi-
tion. The Sommerfeld condition is based on the wave equa-
tion and can be applied to properties that satisfy the wave
equation. In this case the Sommerfeld condition is applied
to the velocity components of the fluid:

∂u

∂t
= −c

∂u

∂x
(2)

∂w

∂t
= −c

∂w

∂x
(3)

in three dimensions an extra equation for the velocity com-
ponent in y-direction, v, is added. A wave traveling with
wave speed c is fully absorbed by this condition. Therefore,
the Sommerfeld condition is very useful for regular wave sim-
ulation, where it can be tuned to absorb the wave exactly.
Waves with a slightly different wave speed are partially re-
flected. This reflection is analytically found to be:

r =

∣

∣
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cs − ω/k

cs + ω/k

∣

∣

∣

∣

(4)

With the reflection coefficient r defined as the fraction be-
tween the amplitude of the reflection and the original am-

plitude, r =
ζarefl

ζaorig

. In Fig. 4 and Fig. ?? the reflection coef-

ficients found numerically are compared with the analytical
values of Eq. 4 for deep water and shallow water respectively.
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Figure 4: Reflections found using the Sommerfeld condition
tuned for different wave frequencies on deep water compared
with theoretical results.

It shows that the Sommerfeld condition works as expected.
It perfectly absorbs one frequency and is thus very suitable
for regular wave simulations. For irregular waves the Som-
merfeld condition can be used to absorb the peak period and
a large part of the other periods, or to absorb the long shal-
low water wave. However, the Sommerfeld condition alone
is not enough to absorb a full wave spectrum.

Solitary wave splitting

To investigate the ability of the VOF based Navier Stokes
solver to simulate nonlinear phenomenon, the splitting of a
solitary wave (or soliton) propagating over an uneven bot-
tom is simulated.

Because the propagation and splitting of a soliton is a
subtle balance between dispersion and nonlinearity, West-
huis [2] used the propagation of a soliton over uneven bot-
toms to test the ability of his nonlinear finite element code
to simulate both these aspects.

The soliton is propagating reasonable steady, although the
height is slowly increasing as it propagates. This was not
found in the experiments of Westhuis, where a steady soliton
with a height of 0.102 m was obtained over a long domain.
This discrepancy could be caused by the empirical initial
condition. The propagation speed of 2.429m/s is in good
agreement with the speed found by Westhuis, 2.427m/s,
and the theoretical values of Boussinesq and Korteweg-de
Vries respectively 2.426m/s and 2.436m/s.

For the simulation of a soliton splitting into three solitons,
the bottom rises from -−0.5m to −0.25m between x = 20m
and x = 30m. A square grid of dx = 0.025 is used, which
showed accurate for the even bottom case. Due to the slop-
ing bottom the velocity increases, to limit the CFL-number
the time step is therefore halved to dt = 0.005. Snapshots
of the splitting at a number of time levels are shown in
Fig. 6. The steepening of the soliton at the bottom slope is
clearly shown, although the final height of 16.4m found by
Westhuis for the largest soliton is not reached. Further, the
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Figure 5: Snapshots of a soliton propagating over an even
bottom on t = 4s, t = 10s, t = 16s and t = 22s, for different
grid sizes.

height of the largest soliton drops rapidly while propagat-
ing. This indicates that an even finer grid is necessary in
the shallow water region, which could also be the cause that
the largest soliton doesn’t reach his final height. Also the
splitting process in the shallow water region is captured by
the simulations, a second soliton is detached from the first
and also a third soliton is clearly developing. The second
soliton is also a bit lower than the one found by Westhuis,
0.049m against 0.0538m. However, the height of this soliton
is still increasing, so it might not be fully developed yet.

It can be concluded that the present method is capable of
simulating even subtle nonlinear phenomenon like the prop-
agation and splitting of a soliton. However, to accurately
capture the steepening of the main soliton a finer grid should
be applied. And to fully capture the splitting process a
longer domain is necessary. For these measures the compu-
tational resources where not available. The development of
a multi block algorithm for problems like these, when a finer
grid resolution is required in part of the domain, could in-
crease the effectiveness of the method and is therefor highly
recommended.
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Figure 6: Snapshots of a soliton propagating over uneven
bottom on t = 3s, t = 7s, t = 11s, t = 16s, t = 21.5s and
t = 27s.
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