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SUMMARY
Some structures floating in water can support a trapped mode which is a free oscillation of the fluid with finite energy.
In the two-dimensional water-wave problem the best known trapping structure has two fixed surface-piercing elements
and the fluid motion is essentially confined to the region between the structures. In this paper, the perturbation of such
structures is examined to assess the importance of the particular geometries. Two types of perturbation are examined,
namely changes in the spacing between the structural elements and changes in the geometry of individual elements.

1 INTRODUCTION

Trapped modes are free oscillations with finite energy of
an unbounded fluid for which the fluid motion is essen-
tially confined to the vicinity of a fixed structure, and thus
a trapped mode does not radiate energy to infinity. For
structures in the open sea, such trapped modes are possible
only for particular shapes of structure, and then they occur
only for discrete frequencies of oscillation of the fluid.

The existence of a trapped mode for a structure has no-
table consequences in both the frequency and time do-
mains. For example, in the frequency domain there is
singular behaviour in the added mass at the trapped-mode
frequency [1], while in the time domain a forced motion
of a trapping structure usually results in a persistent fluid
oscillation at the trapped-mode frequency [2].

Here attention is restricted to two-dimensional problems
and Cartesian coordinates (x, z) are chosen with z directed
vertically upwards and with origin in the mean free sur-
face. The fluid domain is bounded below by a flat rigid bed
at z = −h but extends to infinity in both the positive and
negative x directions. A typical surface-piercing trapping
structure for the two-dimensional problem, constructed by
the method described in [3], is shown in figure 1 for the
case of deep water (h → ∞). The flow field for this par-
ticular structures is generated by two wave sources placed
in the free surface at x = ±π/2 (marked by filled circles
in the figure), and there are no waves at infinity provided
K = ω2/g = 1, where ω is the frequency of the fluid
oscillations and g is the acceleration due to gravity. The
structure is formed from two streamlines of the flow.

A trapped mode for a fixed structure such as that in fig-
ure 1 consists of a fluid motion that is essentially confined
to the region between the structural elements with decay
of the fluid motion as |x| → ∞. In this example, the fluid
motion is symmetric about x = 0 and the fluid motion
between the elements is a “pumping” motion without any
free-surface nodes. Structures have been constructed that
support trapped modes that are both symmetric and anti-
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Figure 1: Example of a trapping structure.

symmetric about x = 0 and with any number of nodes on
the section of free surface between the elements. In the
example illustrated in figure 1 there is symmetry of the
geometry about x = 0, but this need not be the case.

In general, an arbitrarily small change in the geometry
of a trapping structure will give a structure that does not
support trapped modes (although, for the structures here,
there are certain perturbations that preserve the trapping
property). The aim is to examine how “special” trapping
structures are. How are the frequency- and time-domain
properties of a trapping structure affected by perturbations
in geometry that destroy the trapping property? Here at-
tention will be restricted to two situations. In section 2 the
affects on the added mass of changes in the spacing be-
tween structural elements will be examined. In section 3
the affects on the time-domain solution of changes in the
geometry of the structural elements will be examined.

2 CHANGES IN ELEMENT SPACING
Here the structures considered are perturbations of that in
figure 1. The heave added mass µ for the trapping struc-
ture itself is shown in figure 2. Rapid changes in µ are
associated with the singularities of the frequency-domain
potential φ(x, z, ω) e−iωt in the complex ω plane (here t
is time). For a trapped mode there is a pole of φ on the
real ω axis and as the geometry is perturbed away from a
trapping structure this pole moves into the lower half of
the complex ω plane. As a function of real frequency, the
added mass undergoes very rapid changes near a trapped,
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Figure 2: Heave added mass µ vs. frequency parameter K
for the trapping structure shown in figure 1.

or near-trapped, mode for which there is a pole in φ re-
spectively on or close to the real ω axis.

The computations were made with a panel code and be-
cause of numerical error the “singular” behaviour of the
added mass does not occur exactly at K = 1 (in fact
it occurs at K = 1.0003). For a trapping structure the
added mass becomes unbounded as the trapped-mode fre-
quency is approached but, again due to numerical error, in
the computations the extremes of the added mass are fi-
nite (but in excess of 105 in this example). The value of
K corresponding to a sign change in the added mass will
be denoted by K0, and the positive and negative extreme
values of the added mass by µ+ and −µ− respectively (it
can be shown that µ+ ≈ µ− for a near-trapped mode).

If the structural elements are moved apart a distance d,
say (d = 0 corresponds to the trapping structure), then
K0 and µ± all decrease until the characteristic shape of
figure 2 is no longer discernible. Simultaneously, a similar
feature in the added mass grows and moves toward K =
1 from higher frequencies. A small sample of results is
given in table 1. For each value of d, data is given for the
“singular” feature in the added mass of lowest frequency.

d K0 µ+ µ−
0 1.000 > 105 > 105

0.050 0.911 1.2 × 104 1.2 × 104

0.500 0.585 17.2 18.6
1.000 0.452 5.1 5.8
2.000 1.484 3.1 × 102 3.5 × 102

3.085 1.019 > 105 > 105

Table 1: Changes in the singular behaviour of the added
mass as the element spacing d is increased.

The appearance of a second “singular” feature in the
data of table 1 can be explained in terms of a wide-
spacing approximation based on the properties of a sin-
gle structural element. Provided that the two elements of
a structure are sufficiently widely spaced for local fields
to be negligible in hydrodynamic interactions, the follow-
ing heuristic argument predicts the existence of trapped
modes [4]. If an element totally reflects a plane wave (so
that the transmission coefficient T = 0) at a particular fre-
quency, then by appropriate choice of the spacing between
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Figure 3: Modulus of transmission coefficient T vs. fre-
quency parameter Kfor one element of trapping structure.

the element and a second element formed by the mirror
image of the first in x = 0, it is possible to construct a
standing wave oscillation between the elements and have
the fluid motion decay to zero as |x| → ∞ (the propagat-
ing wave components of the standing wave are both totally
reflected). In figure 3 |T | for one element of the structure
shown in figure 1 is given as a function of frequency and,
as can be seen, there is a minimum in |T | close to zero
near K = 1 (in fact it occurs at K = 1.019). Under the
assumption that this minimum is indeed a zero, the wide-
spacing argument predicts trapped modes for K = 1.019
at an infinite sequence values of the spacing parameter d
some of which are given in table 2. Two types of mode
are predicted, namely modes that are either symmetric or
antisymmetric about x = 0. In all cases near-singular be-
haviour in the heave added mass is found and the exis-
tence of the symmetric modes explains the results of ta-
ble 1 in which µ± increase as d approaches 3.085 (on the
basis of numerical calculations, it can not be determined
whether or not a true trapping structure can be obtained in
this way). The antisymmetric modes are associated with
near-singular behaviour in the surge added mass.

symmetric antisymmetric

0.002 1.544
3.085 4.627
6.168 7.710

Table 2: Values of the spacing d for which trapped modes
are predicted by the wide-spacing approximation.

3 CHANGES IN ELEMENT GEOMETRY
Attention is now turned to changes in the elements of the
structure and the associated effects in the time domain.
Again the structure is constructed from wave sources, but
here the structure is in fluid of finite depth h and, for this
example, the trapped mode has an oscillation frequency
ω0 =

√
(4 tanh 4)g/h ≈ 1.99933

√
g/h. The corre-

sponding fluid oscillation is symmetric about x = 0 and
between the structural elements there are two free-surface
nodes. Outside the elements, the fluid motion decays to
zero as |x| → ∞. Note that the construction guaran-
tees the existence of only a single trapped mode. Calcula-



tions are also presented for two other structures, a pair of
half-immersed circles and a pair of half-immersed ellipses,
with boundaries that intersect the free surface z = 0 at the
same points as the trapping structure (see figure 4).

Time-domain calculations for the linear water-wave
problem were made using the method described in [2].
The structure is moved vertically with the displacement

S(t) =

{
0, t < 0,

αh(t/T )3 e−t/T , t ≥ 0,
(1)

so that it is displaced and then brought back to rest; the
constant α 	 1 ensures that linear theory applies, and the
time scale T =

√
h/g.

The results in figure 5 are for the trapping structure and
the two semicircles and show the free-surface elevation
η(0, t) at the mid point x = 0 between the two struc-
tural elements. For times t < 30T , η(0, t) is notice-
ably different for the two structures, but for larger times
the free-surface motions are very similar. The discrete
Fourier transform was used to reveal the frequency con-
tent of the time signals; results are described in terms of
the non-dimensional frequency Ω = ω

√
h/g, where ω

is the transform variable. The fluid response is expected
to display an oscillation in η(0, t) at non-dimensional fre-
quency Ω ≈ 2.0 (the trapped-mode frequency), but there
should be no radiation to infinity at this frequency.

For both geometries of figure 5 there are three main
peaks in the Fourier transform: a broad peak at Ω ≈ 0.6,
and narrow peaks at Ω ≈ 2.0, and 2.8. When the time in-
terval 0 < t/T < 50 is excluded there are only two signif-
icant peaks at Ω ≈ 2.0 and 2.8 and a virtually zero trans-
form in the low-frequency range. The combined oscilla-
tions at Ω ≈ 2.0 and 2.8 are observable for larger times in
figure 5; they correspond to standing waves between the
structural elements whose wavelength is approximately
equal to, and one half of, the inter-element spacing, re-
spectively. The low-frequency oscillation at Ω ≈ 0.6 is
a pumping motion that dies out rapidly due to wave radi-
ation and can be seen at smaller times in figure 5. The
similarity between, and the positions of, the ‘inner’ parts
of the two geometries near the free surface ensure that the
high-frequency components of the fluid motions are also
similar. On the other hand, the geometrical differences at
depth and on the ‘outer’ parts of the structures significantly
influence the low-frequency components of the motions.

Wave radiation is revealed by the Fourier transform of
a far-field time signal corresponding to the results in fig-
ure 5. With the earlier times removed, this shows an iso-
lated peak at Ω ≈ 2.0 for the half-immersed circles but
no other significant peak for either structure. The absence
of a peak at Ω ≈ 2.0 for the trapping structure is to be
expected as, by construction, the trapped mode does not
radiate energy at this frequency. No measurable radiation
at Ω ≈ 2.8 could indicate that both structures possess a
trapped mode at this frequency. However, it seems more
likely that, because of the deep drafts relative to the wave-
length, radiation is simply very small.

Time-domain results for the half-immersed ellipses are
presented in figure 6. Here η(0, t) is clearly different from
either signal shown in figure 6. The Fourier transform of
the complete signal shows a broad-band peak at Ω ≈ 0.75
and narrower peaks at Ω ≈ 2.1 and 2.9 (the three peaks are
interpreted as above), although there is significant energy
for almost all frequencies up to about Ω ≈ 3. The Fourier
transform of the corresponding time signal for the far field
shows a narrow peak at Ω ≈ 2.1 and significant compo-
nents at almost all frequencies up to Ω ≈ 3. The shallow
draft of this structure means that very narrow-banded near-
resonances no longer occur within the frequency range
studied, and hence the free-surface motion is more com-
plex than those shown in figure 5 and has more frequency
components of significant amplitude.

For a structure that supports trapped or near-trapped
modes, the large-time asymptotics of the time-domain po-
tential is related to the pole structure of the frequency-
domain potential φ. To illustrate this the heave added
mass for the three structures shown in figure 4 is given
as a function of Ω in figure 7, and the rapid variations aris-
ing from the poles are readily seen. The main features of
the time-domain calculations are all reflected in the added-
mass curves shown in figure 7. For both the trapping struc-
ture and the half-immersed circles, there is a broad-banded
local minimum at Ω ≈ 0.6 that corresponds to the initial
pumping oscillation in the time domain, and for the persis-
tent oscillations at Ω ≈ 2.0 and 2.8 there are correspond-
ing narrow-banded changes in the added mass coefficient.
On the other hand the curve for the half-immersed ellipses
shows more broad-banded, less pronounced, peaks and a
shift towards higher frequencies of the local extrema.

4 CONCLUSION
Geometrical perturbations of a trapping structure that ap-
pear to be significant can lead to structures whose prop-
erties in the frequency- and time-domains are difficult to
distinguish from those of the original trapping structure.
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Figure 4: Geometries: trapping structure (———), pair of half-immersed circles (– – – –), pair of half-immersed ellipses
with draft 0.1h (– · – · –)
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Figure 5: Free-surface elevation η(0, t) generated by the forced motion of the trapping structure (———) and the half-
immersed circles (– – – –).
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Figure 6: Free-surface elevation η(0, t) generated by the forced motion of the half-immersed ellipses.
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Figure 7: Non-dimensional heave added mass µ vs. non-dimensional frequency Ω = ω/
√

g/h for the structures shown in
figure 4: trapping structure (———), pair of half-immersed circles (– – – –), pair of half-immersed ellipses (– · – · –)
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Question by : J.N. Newman 
My guess is that the last line in Table 1 is simply a consequence of the standing wave 
“sloshing” resonance, and that there is no “pure” trapping mode for this geometry. Do you 
agree? 
 
Author’s reply:  
“Sloshing” and “pure trapping” are very closely related. On the basis of numerical 
calculations it is very difficult (impossible?) to distinguish between the two. It is perhaps 
unlikely that the last line of Table 1 corresponds to a trapped mode, but I can not be ruled out. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : H. Bingham 
These trapping structures do not radiate at the trapped-mode frequency, yet as we saw in the 
previous talk they have non-zero damping. Can you explain this? 
 
Author’s reply:  
A fixed trapping supports a free oscillation that does not radiate. If the structure is forced to 
oscillate at the trapped mode frequency (in a suitable mode) then the frequency-domain 
solution does not exist. The previous talk was concerned with the limit as the trapped-mode 
frequency is approached 
In the time-domain, a trapping structure forced to oscillate at the trapped frequency does 
radiate waves at that frequency (see the paper by McIver, McIver & Zhang presented at the 
17th IWWWFB). The non-zero limit of the damping refered to above may be related to this, 
but this has not been confirmed. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : D.V. Evans 
The behaviour of the free surface in time is very similar for the trapping structure and for a 
pair of semicircles. How long is it before the oscillations in the case of the semicircle tends to 
zero? 
 
Comment by : D.V. Evans 
You suggested that trapped modes did not exist for “real” bodies. But Shipway (Ph.D thesis 
University of Bristol 2003) has obtained a wide range of trapped modes for the case of two 
vertical partially immersed concentric shells in finite water depth 
 
Author’s reply:  
The decay rate can be estimated from the numerical calculations. For the two semicircles the 
amplitude of the oscillation at frequency Ω≈2 decreases by about 2.5% in a time interval 
100T. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : M. Meylan 
How did you solve the time domain problem? Do you think that solving for the complex roots 
would eliminate this theory? 
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Author’s reply:  
The time-domain problem was solved using a time-stepping technique that is described 
briefly in the paper by McIver, McIver & Zhang presented at the 17th IWWWFB. 
Calculations of the “complex roots” is certainly useful. For example, the position of a root 
yields the decay rate of a near resonant oscillation in the time domain. An estimate of the root 
position can be obtained from the added mass, but a more refined calculation procedure would 
give more complete information. 
 
----------------------------------------------------------------------------------------------------------------- 
 
Question by : R. Porter 
You demonstrated the close connection between zeros of transmission for a single body and 
trapping between pairs of structures. Have you computed the transmission coefficient for the 
non-trapping structure (circle+ellipse) and confirmed the non-existence (or otherwise) of 
zeros of transmission? 
 
Author’s reply:  
For the circle and ellipse the transmission coefficient is a monotically decreasing function of 
frequency that has no zero. This highlights the special nature of the trapping structure. 
 


