Effects of Desingularization and Collocation-Point Shift on Steady Waves with Forward Speed

Yonghwan Kim* & Dick K.P. Yue**
Massachusetts Institute of Technology, Department of Ocean Engineering, Cambridge, MA, USA
* ykim@vfrl.mit.edu, **yue@mit.edu

Introduction

After the pioneering work of Dawson ([1]) for steady ship waves, many variations of panel method have been studied for steady ship wave problems. In the early stage of those studies, the application to wave-resistance computation was of primary interest for practical reasons, and such studies contributed to the births of some computer programs, e.g. DAWSON, SHIPFLOW, SWIFT and RAPID. Sclavounos and Nakos ([2]) introduced a strong background of the Rankine panel method based on a rigorous stability analysis for steady wave problems, and also showed the advantage of the higher-order B-spline scheme. Raven ([3]) introduced the favorable properties of a raised-panel method using the similar two-dimensional stability analysis, and Bunnik ([4]) also included the effects of raising panel in his unsteady stability analysis. In the present study, theoretical and numerical efforts are given to observe the effects of desingularization and collocation-point shift on the numerical solution of panel method. We perform a more complete three-dimensional stability analysis, and a numerical error is defined to compare the accuracy of different numerical schemes. For validating our theoretical analysis, the numerical solutions of steady wave problem near a point singularity with forward speed are observed.

Stability Analysis of Steady Rankine Panel Method

The linear free surface boundary condition with a steady forward speed \(U\) is written as

\[U^2 \frac{\partial^2 \Phi}{\partial x^2} + g \frac{\partial \Phi}{\partial z} = 0. \]

When the free surface is discretized into uniform rectangular panels of the size \((\Delta x, \Delta y)\), the disturbed free-surface flow (potential \(\Phi\) or singularity strength \(\sigma\)) in a discrete domain can be written as

\[\begin{bmatrix} \Phi \\ \sigma \end{bmatrix} = \frac{1}{(2\pi)^2} \int_{-\pi/\Delta x}^{\pi/\Delta x} \int_{-\pi/\Delta y}^{\pi/\Delta y} \hat{W} e^{i\alpha x + i\beta y} \, du\, dv. \]

\(\hat{W}\) includes the numerical dispersion relation. At first, let’s consider a constant source distribution method such that

\[\frac{\partial^2 \Phi}{\partial x^2} = \sum_j \frac{1}{R} \int_{J} dS + g \frac{\partial}{\partial z} \sum_j \int_{J} dS = 0 \]

where \(I/R\) is the distance between the field and singularity points. Omitting the details, \(\hat{W}\) corresponding equation (3) can be written as follows:

\[\hat{W} = \hat{D} + k_0 \hat{I}_z \]

where \(k_0 = g/U^2\), and

\[\hat{D} = \sum_{j=J_1}^{J_2} \frac{d_i}{\Delta x} \delta(t_i \Delta u) \]

\[\hat{I}_z = \sum_{m} \sum_{n} 2\pi i u_m \frac{e^{i \xi} \sin(u_m \Delta z/2)}{\sqrt{u_m^2 + v_m^2}} \left\{ \frac{\sin(u_m \Delta z/2)}{u_m \Delta z/2} \right\}^{p+1} \left\{ \frac{\sin(v_m \Delta y/2)}{v_m \Delta y/2} \right\}^{q+1} \]

Figure 1. Definitions for stability analysis
\[
\tilde{I}_z = \sum_{m} \sum_{\mu} -2\pi \zeta \sin^{\zeta} \left(\frac{\sin(\mu \Delta x/2)}{\mu \Delta x/2} \right) \left(\frac{\sin(\nu \Delta y/2)}{\nu \Delta y/2} \right)^{\nu+1} \sum_{\alpha=0}^{\nu} \alpha \beta \lambda \delta \
\]

where \(u_m = u + 2\pi m / \Delta x \), \(v_n = v + 2\pi n / \Delta y \), and \(p=q=0 \). \(\zeta = \alpha \beta \lambda \delta \) is the height of panel surface raised from the free surface and \(\delta \) is the longitudinal shift of collocation points. \(\tilde{D} \) is the discrete Fourier transform of finite difference, and \(D \) is the corresponding coefficients. For example, the Dawson’s 4-point difference is the case that \(J1=0, J2=4 \). In this range. As expected, the numerical damping increases when the collocation points are shifted to upstream. The numerical damping caused by the difference of wavelength, and the numerical damping causes the difference of wave amplitude. To observe the overall accuracy of a certain numerical scheme, we define a parameters such that

\[
E^{(m,N)}_q = \int_0^{\Delta x/\mu_0} \left| \int_0^{\Delta x/\mu_0} e^{i\tilde{u}x} - e^{i\tilde{u}x_{+m}} \ dx \right| \frac{1}{\tilde{u}} \ dx \quad \text{for } \Delta x/\Delta y = 1
\]
where $\tilde{u} = u \Delta x / 2\pi$ and u_0 is the exact wave number. $E_{\gamma}^{(m,N)}$ is an integral of weighted numerical errors in a range of $0 \leq \tilde{u} \leq \gamma$ over N wavelengths. $\tilde{u} = 1/2$ is the maximum discrete wave number to possibly appear, and this wave is so-called saw-tooth wave which is not desirable in the viewpoint of numerical stability. $1/\tilde{u}$ in (11) is multiplied to give more weight when \tilde{u} is small. It should be noted that the consistency of a numerical scheme implies that the numerator of (11) should vanish as \tilde{u} approaches zero.

Figure 3 compares $E_{0,1}^{(1,2)}$ and $E_{0,1}^{(1,6)}$ for different numerical schemes. This result can be particularly important in a practical perspective, since $\gamma \leq 0.1$ is valid in most numerical computations. According to this result, the desingularization method seems to reduce the overall numerical error, and the optimum case depends on the numerical scheme. The 3-point and Dawson’s difference have an optimum α near 0.2. On the other hand, the higher-order method does not have a significant benefit. The effect of collocation-point shift is not significant in this case. The 4-point conventional difference scheme has some reduction of error due to the numerical damping compensating the negative damping in this range of γ (see Figure 2-(a)).

Applications and Validation

The steady wave elevations near a moving point singularity located at $(x,y,z)=(0,0,-d)$ are obtained using a few different numerical schemes to validate the stability and error analyses. In this computation, $U / \sqrt{gd} = 1.0$ is applied, and the computational domain covers 1.5 (upstream) and 3.5 (downstream) times of exact wavelength in longitudinal direction and twice in transverse direction. The numbers of applied grids are 50x20 ($\tilde{u}_0 = 1/10$), 70x30 ($\tilde{u}_0 = 1/15$) and 100x20 ($\tilde{u}_0 = 1/20$). Figure 4 compares the wave elevations at $y/d=1.0$ for different α and β. As expected, shorter waves are observed in the conventional scheme, i.e. when $\alpha = 0$ and $\beta = 0$. However, the wavelengths are longer in the case of nonzero α. Also significant damping is shown for nonzero β. Figure 5 is the elevation contour plots of three solutions, showing slightly different wave angles. A larger angle is found when $\alpha = 0$ and $\beta = 0$, but the solution obtained from the desingularized scheme shows an excellent agreement with the analytic solution. To understand this trend, we should observe both the longitudinal and transverse wave numbers, (u,v), as shown in Figure 6. Figure 6 shows the three-dimensional surfaces of (u_0, u, v) for the two cases of Figure 5. For a given exact wave number (u_0) and Δx (e.g. bold line on bottom), the conventional method induces smaller u and larger v (contour on upper surface) than the desingularized case (contour on lower surface). This causes shorter longitudinal waves and longer transverse wave, consequently the larger wave angle. Figure 7 compares the numerical errors obtained from the source method and $E_{0,5}^{(1,4)}$ predicted by the stability analysis. The numerical errors obtained from the source method is defined as follows:
\[
\eta \bigg| \frac{x}{d} \bigg| = \int_{\text{domain}} |\eta_0 - \eta| \, dS \tag{12}
\]

where \(\eta_0\) is the wave elevation of exact solution. Although the magnitudes of two errors are not same (because of different definitions), they show a fair agreement of the sensitivity on \(\alpha\) and \(\beta\). Similar to Figure 3, the minimum errors are found near \(\beta = 0.2\) in both cases.

Figure 4. Wave elevations at \(y/d = 1.0\); 4-pt. Dawson, 75x30 grids

Figure 6. Wave contours near a moving sink: \(\beta = 0.0\), 100x20 grids

Figure 6. \((u_0, u, v)\) surface for two cases of Figure 5.

(a) \(E_{0.5}^{(1,4)}\)

(b) Actual error

Figure 7. \(E_{0.5}^{(1,4)}\) and actual elevation error; 75x30 grids

References

Question by: X.B. Chen

Thank you for your important work which helps me to understand the difficulty of R.P.M. in modelling surface waves. My question is whether you’ve studied as well such effects on global values such as the wave resistance which are associated with wave patterns, and how much are they?

Author’s reply:

There is no doubt that computational parameters such as desingularization and collocation point shift affect the wave resistance predictions. The degree this is true depends on physical parameters such as geometry and speed. For example, Fig. A shows significant difference of wave contours around a Wigley hull obtained with and without desingularization and collocation-point shift. We are in the process of obtaining more systematic data on the wave resistance and look forward to publishing these when they are available.

![Wave Contours Comparison](image_url)

Fig. A comparison of wave contours around Wigley Hull at Froude number 0.3