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Introduction 
 
      After the pioneering work of Dawson ([1]) for steady ship waves, many variations of panel method have been 
studied for steady ship wave problems. In the early stage of those studies, the application to wave-resistance 
computation was of primary interest for practical reasons, and such studies contributed to the births of some computer 
programs, e.g. DAWSON, SHIPFLOW, SWIFT and RAPID. Sclavounos and Nakos ([2]) introduced a strong 
background of the Rankine panel method based on a rigorous stability analysis for steady wave problems, and also 
showed the advantage of the higher-order B-spline scheme. Raven ([3]) introduced the favorable properties of a 
raised-panel method using the similar two-dimensional stability analysis, and Bunnik ([4]) also included the effects of 
raising panel in his unsteady stability analysis. In the present study, theoretical and numerical efforts are given to 
observe the effects of desingularization and collocation-point shift on the numerical solution of panel method. We 
perform a more complete three-dimensional stability analysis, and a numerical error is defined to compare the 
accuracy of different numerical schemes. For validating our theoretical analysis, the numerical solutions of steady 
wave problem near a point singularity with forward speed are observed. 
 
Stability Analysis of Steady Rankine Panel Method 
 
     The linear free surface boundary condition with a steady forward speed U is written as 
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When the free surface is discretized into uniform 
rectangular panels of the size ),( yx ∆∆ , the disturbed free-
surface flow (potential Φ or singularity strength σ ) in a 
discrete domain can be written as  
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Ŵ  includes the numerical dispersion relation. At first, 
let’s consider a constant source distribution method such that                 Figure 1. Definitions for stability analysis 
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where 1/R is the distance between the field and singularity points. Omitting the details, Ŵ  corresponding equation (3) 
can be written as follows: 
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where xmuum ∆π+= /2 , ynvvn ∆π+= /2 , and p=q=0. )( 22 yx ∆+∆α=ς  is the height of panel surface raised from the  

free surface and )( x∆β=δ  is the longitudinal shift of collocation points. D̂  is the discrete Fourier transform of finite 
difference, and jd ’s are the corresponding coefficients. For example, the Dawson’s 4-point difference is the case that 

J1=0, J2=4, and jd =10/6, -15/6, 1, -1/6. The higher-order B-spline source distribution provides a similar dispersion 

relation, but D̂  is not necessary and the order of the spline function can be controlled by p and q in equation (6) and 
(7). For instance, p=q=2 indicates a bi-quadratic distribution. In addition, xÎ  should be replaced to xm Iiu ˆ . In the case 
of a potential-based method, the discrete Fourier transform of the Green’s 2nd identity should be observed and the 
desingularization is not applicable. For the potential-based method, the details are well described in [2]. 
      Figure 2 shows the numerical dispersion and damping of the source methods with different α and β , and three 
different schemes are considered. The x-axis in this figure is the exact wave number, and the y-axes are the wave 
number to appear in actual computation and damping coefficient relative to the corresponding waves. Therefore, the 
schemes of figure  (a) and (b) can provide one or two numerical wave components depending on x∆ , and no solution 
is also possible. π∆ 2/0 xu  has a range of 1/40~1/10 in most practical computation, and the saw-tooth wave may appear 
in this range. As expected, the numerical damping increases when the collocation points are shifted to upstream. The 
numerical damping shown here is more thoroughly studied by Kim and Yue ([5]). On the other hand, the 
desingularization induces longer wavelength than the conventional method. These results are consistent with the two-
dimensional cases of Raven ([3]). α and β  do not affect much the higher-order scheme, except for a small damping 
due to nonzero β . In a practical point of view, π∆ 2/0 xu  less than 0.1 is of great importance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (a) 4-point conventional                           (b) 4-point Dawson                                (c) Bi-quadratic B-spline 
Figure 2. Numerical dispersion and damping for different α and β : source method, α =0, 0.25, β =0, 0.25, 1/ =∆∆ yx  
 
 
Numerical Errors 
 
     Two major sources of computational error are dispersion error, and numerical damping. The dispersion error 
causes the difference of wavelength, and the numerical damping causes the difference of wave amplitude. To observe 
the overall accuracy of a certain numerical scheme, we define a parameters such that 
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where π∆= 2/~ xuu  and 0u  is the exact wave number. ),( NmEγ  is an integral of weighted numerical errors in a range of  

γ≤≤ u~0  over N wavelengths. 2/1~ =u  is the maximum discrete wave number to possibly appear, and this wave is so-
called saw-tooth wave which is not desirable in the viewpoint of numerical stability. u~/1  in (11) is multiplied to give 
more weight when u~  is small. It should be noted that the consistency of a numerical scheme implies that the 
numerator of (11) should vanish as u~  approaches zero. ),( NmEγ  reflects a limited damping effects at large u~ , but may 

be a good index to compare the overall errors in a specific range of u~ . 
     Figure 3 compares )2,1(

1.0E  and )6,1(
1.0E  for different numerical schemes. This result can be particularly important in a 

practical perspective, since 1.0≤γ  is valid in most numerical computations. According to this result, the 
desingularization method seems to reduce the overall numerical error, and the optimum case depends on the numerical 
scheme. The 3-point and Dawson’s difference have an optimum α  near 0.2. On the other hand, the higher-order 
method does not have a significant benefit. The effect of collocation-point shift is not significant in this case. The 4-
point conventional difference scheme has some reduction of error due to the numerical damping compensating the 
negative damping in this range of γ  (see Figure 2-(a)). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) α =0                                                                             (b) β =0,0.25 

Figure 3. )2,1(
1.0E  and )6,1(

1.0E  of four numerical schemes; source method; 1/ =∆∆ yx  
 
 
Applications and Validation 
 
     The steady wave elevations near a moving point singularity located at (x,y,z)=(0,0,-d) are obtained using a few 
different numerical schemes to validate the stability and error analyses. In this computation, gdU / =1.0 is applied, 
and the computational domain covers 1.5 (upstream) and 3.5 (downstream) times of exact wavelength in longitudinal 
direction and twice in transverse direction. The numbers of applied grids are 50x20 ( 10/1~

0 =u ), 70x30 ( )15/1~
0 =u  and 

100x20 ( )20/1~
0 =u . Figure 4 compares the wave elevations at y/d=1.0 for different α  and β . As expected, shorter 

waves are observed in the conventional scheme, i.e. when α =0 and β =0. However, the wavelengths are longer in the 
case of nonzero α . Also significant damping is shown for nonzero β . Figure 5 is the elevation contour plots of three 
solutions, showing slightly different wave angles. A larger angle is found when α =0 and β =0, but the solution 
obtained from the desingularized scheme shows an excellent agreement with the analytic solution. To understand this 
trend, we should observe both the longitudinal and transverse wave numbers, (u,v), as shown in Figure 6. Figure 6 
shows the three-dimensional surfaces of ( 0u , u, v) for the two cases of Figure 5. For a given exact wave number ( 0u ) 
and x∆  (e.g. bold line on bottom), the conventional method induces smaller u and larger v (contour on upper surface) 
than the desingularized case (contour on lower surface). This causes shorter longitudinal waves and longer transverse 
wave, consequently the larger wave angle. Figure 7 compares the numerical errors obtained from the source method 
and )4,1(

5.0E  predicted by the stability analysis. The numerical errors obtained from the source method is defined as 
follows: 
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where 0η  is the wave elevation of exact 
solution. Although the magnitudes of two 
errors are not same (because of different 
definitions), they show a fair agreement of the 
sensitivity on α  and β . Similar to Figure 3, 
the minimum errors are found near β =0.2 in 
both cases. 
 
 

    Figure 4. Wave elevations at y/d=1.0; 4-pt. Dawson, 75x30 grids 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Wave contours near a moving sink: β =0.0, 100x20 grids                  Figure 6. ( 0u , u, v) surface for two cases  
                                                                                                                                                   of Figure 5. 
 
 
 
 
 
   
 
 
 
 
 
 
 
                                               (a) )4,1(

5.0E                                                        (b) Actual error 
Figure 7. )4,1(

5.0E  and actual elevation error; 75x30 grids 
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Question by : X.B. Chen 
Thank you for your important work which helps me to understand the difficulty of R.P.M. in 
modelling surface waves. My question is whether you’ve studied as well such effects on 
global values such as the wave resistance which are associated with wave patterns, and how 
much are they? 
 
Author’s reply:  
There is no doubt that computational parameters such as desingularization and collocation 
point shift affect the wave resistance predictions. The degree this is true depends on physical 
parameters such as geometry and speed. For example, Fig. A shows significant difference of 
wave contours around a Wigley hull obtained with and without desingularization and 
collocation-point shift. We are in the process of obtaining more systematic data on the wave 
resistance and look forward to publishing these when they are available 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. A comparison of wave contours around Wigley Hull at Froude number 0.3 
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