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INTRODUCTION 
 
Numerical simulation of the floating body motion in rough seas is a 
challenging subject. The main difficulty is that the topology of free 
surface may be largely distorted or broken up, which makes it 
impossible to apply the conventional numerical method such as the 
potential-flow based method by BEM. As there is a growing interest in 
the extreme wave-body interactions such as slamming, water on deck, 
wave impact by the green water and capsizing due to large-amplitude 
waves, development of new CFD simulation methods for the 
seakeeping researches is therefore required. Recently several 
challenging works have been made by the finite difference method in 
which the free surface is treated by VOF method (Greco et al., 2002), 
and by the particle method (Sueyoshi and Naito, 2001). Some 
preliminary results have been shown, but still many difficulties should 
be cleared before performing an engineering computation. The particle 
method requires very large computation time and memory and it is 
difficult to make a three dimensional calculation for an engineering 
problem at reasonable cost presently. For VOF method, solving three-
dimensional wave breaking problem seems not easy because of its 
complex algorithms to treat the free surface. It is therefore necessary to 
develop a new numerical simulation method, which are both simple 
and robust enough to perform an engineering computation of extreme 
wave-body interactions.  
 
In this paper a new finite difference method is proposed. The numerical 
model that is under development in RIAM, Kyushu University is based 
on the CIP (Constrained Interpolation Profile) method and the CCUP 
(CIP-combined and unified procedure) method (Yabe and Wang, 1991, 
Yabe et al., 2001). The CIP method is a recently developed semi-
Lagrangian scheme for multiphase analyses, which includes a compact 
upwind scheme with subcell resolution, a pressure-based algorithm that 
can treat liquid, gas and solid phases by one equation.   
 
For the wave-body interaction problems, a typical computation will 
include the calculation of numerical wave tank (NWT) and the 
calculation of floating body motion in it. In the present numerical 
method, this problem is viewed as a multiphase problem, which has a 
liquid phase (water), a gas phase (air) and a solid phase (wavemaker 
and floating body). They are solved numerically in a fixed Cartesian 
grid system by a finite difference method, in which the interfaces 
between different phases are tracked by a Eulerian method with a 
density function. The most important features of the method are as 
follows: 
 

1. Air is included in the computation and its compressibility is 
considered. 

2. The pressure for the whole computation domain (include 

solid body) is calculated by one set of equations. 
3. The motion of floating body is calculated by a Lagrangian 

method. 
 
We will describe the numerical method in the following section, in 
which the above features will be explained. Then a couple of two-
dimensional numerical results are presented. The first example is about 
a two dimensional numerical wave tank, in which the waves are 
generated by a plunger-type wavemaker. An artificial damping zone is 
set at the end of the numerical wave tank. Both of the generated wave 
profiles and the hydrodynamic forces acting on the wavemaker are 
compared with the experiments as well as the results by a Mixed 
Eulerian-Lagrangian method. The second example is a numerical 
simulation on wave-body interaction demonstrating the capability of 
the present numerical method, in which a box-type floating body with 
an upper structure is used. 
 
 
NUMERICAL METHOD 
 
Governing Equations 
 
Assuming that there is no temperature variation with the problem, the 
hydrodynamic equations can be written as follows: 
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Where SC  is the sound speed, ijσ  is the total stress. For a Newtonian 

fluid, the total stress can be written as 2 2 /3ij ij ij ij kkp S Sσ δ µ µδ= − + − , 

where ( ) / 2ij i j j iS u x u x= ∂ ∂ +∂ ∂ . The second term on the right-hand 

side of Eq. (2) denotes the body force, which includes gravity force, 
surface tension force, etc. According to the CCUP method the pressure 
can be solved by the following equation. 
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Note that this equation is valid for fluid, gas and sold phases, i.e. by 
solving Eq. (4), the pressure in the whole computation domain can be 



 

 

obtained. Thus, the boundary conditions for pressure at the interfaces 
between different phases are not necessary, and fast solver or parallel 
computing technique can be easily applied. This is a very important 
feature, because the calculation of Eq. (4) is generally the most 
computationally time-consuming part for this kind of numerical 
simulation. Another advantage of Eq. (4) is that it provides a very 
simple and robust way to compute hydrodynamic forces acting on 
moving bodies in a fixed grid system.  
 
CIP Method 
 
According to CCUP method, the governing equations (1) - (3) are 
solved by a fractional step approach, i.e., at each time level, the 
advection is solved first, then the diffusion is calculated, at last the 
pressure is solved by Eq. (4). The advection calculation is performed by 
the CIP method. The basic idea of the CIP method is that for a value f, 
not only the advection equation of f, but also the advection equation of 
its spatial gradient i iq f x= ∂ ∂ are calculated by a cubic interpolation 

method. Therefore, the following equations are used for the advection 
calculation. 
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For three-dimensional cases, three extra equations must be solved. 
However, as the gradients in each cell can be solved, and only the 
information (value and its spatial gradients) at the grid points within 
one computation cell is needed for the interpolation procedure, this 
scheme has both subcell resolution and compact structure.  This feature 
is very important for a multiphase computation in which there are 
discontinuities or large gradients in the interfaces.  
 
 

 
 

Fig.1 Schematic view of numerical wave tank. 
 
Interface Tracking Method 
 
The moving body boundary and the free surface boundary are 
distinguished by a density function mφ , which is solved by the 

following equation.  
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For the wave-body interaction problem shown in Fig. 1, m =1, 2, 3 
denotes liquid, gas, and solid phase, respectively.   
 
The interface between gas and liquid, or the so-called free surface, is 
determined by solving Eq. (7) with the CIP scheme. Just like some 
other Eulerian interface tracking methods using density functions, the 
thickness of the interface will become a finite value due to the 
numerical diffusivity. However owning to the subcell resolution feature 
of the CIP scheme, the thickness will not grow larger and larger with 
the computation going on. Therefore for many practical problems, we 
have found that this degree of interface diffusion can be acceptable for 
a not very long time computation. A continuum surface force (CSF) 
model (Brackbill et al., 1992) is also involved in the present 
computation program to treat the surface tension, in which the surface 
tension is considered as a continuous, three dimensional effect across 
the interface that is identified by the density function. The surface 
tension force that can be included in the body force term iF  of Eq. (2) 

will have the following expression. 
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 Here Sσ is the surface tension coefficient. No extra treatments are 

needed even when the interface is topologically distorted. 
 
For calculating the motion of solid body boundary, as the floating body 
that we are interested in can be considered as a rigid body, we will not 
use Eq. (7) to obtain the density function for solid phase 3φ . Instead, as 

the geometry of the rigid body does not change with time, a Lagrangian 
method is developed to calculate 3φ  to obtain accurate solid body 

boundary positions without any numerical diffusion. We call this 
method as “geometric mapping method”, for this method is used to 
map the geometry information of a moving body to a fixed Cartesian 
grid system. The basic idea for two-dimensional case is as follows. 
(The three-dimensional version is now under development.) 
 

1. The two-dimensional body boundary is approximated by a 
series of straight line-segments: ( 1,k kp p + ), 1k N= ∼ . 

2. The coordinates for the end points ( ,p pk k
x z ) are calculated by 

the following equations. 

( ) ( )0 0 0 0cos sinp c p c p ck k k
x x x x z zα α= + − − −                  (9) 

( ) ( )0 0 0 0sin cosp c p c p ck k k
z z x x z zα α= + − + −                (10) 

where ( ,c cx z ) is the mass center of the floating body, α is the 

roll angle, the superscript 0 denotes the initial value. ( ,c cx z ) 

and α  are calculated in a Lagrangian way that will be 
described in the next section. 

3. All of the intersection points (nodes) of line segments and grid 
lines are then calculated. For each computation cell, if there are 
more than 2 nodes, the cell is considered as a solid body 
boundary cell, and the area of the solid body in this cell is 
computed and then 3φ in this cell is determined.  

 
After the density function for all phases are calculated, the physical 
properties for each computation cell can be determined by the follow 
equation. 
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where λ  denotes the viscosity, sound speed, etc. 
 
Hydrodynamic Forces on the Floating Body 
 
The hydrodynamic forces acting on the floating body can be obtained 
by integrating the pressure force and skin friction force along the body 
surface. If only the pressure is needed to consider, i.e., the skin friction 
is relatively small and can be neglected, the following Gauss theorem 
can be applied. 
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Where in is the unit normal vector. As the pressure in the whole 

computation domain can be calculated by Eq. (4), Eq. (12) provides a 
very simple and robust way to compute the hydrodynamic forces on the 
moving body in the fixed Cartesian grid system. For instance, for a two 
dimensional problem, the force and the moment acting on the floating 
body can be written as 
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Where Ω  denotes the whole computation domain. Then the position of 
the mass center and the roll angle can be obtained by the following 
equations. 
 

2

2
c

x

d x
F

dt
= ,     

2

2
c

z

d z
F

dt
= ,   

2

2 y

d
M

dt

α =                            (15) 

 
Note that the skin friction force is not considered in Eq. (12) because 
the skin friction force is not continuous across the body surface. 
Therefore another approximate method is needed to develop for the 
problem in which the skin friction cannot be neglected. 
  
Absorbing Boundary Condition for NWT 
 
In order to perform simulations of numerical wave tank over long time 
in a finite computation domain, a non-reflection boundary condition is 
required at the downstream boundary. In this study, an artificial 
damping zone is placed at the downstream boundary 
( 1 1 1 3 3 3,s e b tx x x x x x< < < < ), and an artificial damping force is added 

to the body force term of Eq. (2), which is expressed as follows. 
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where 1

sx ， 1
ex , 3

bx  and 3
tx  denote the positions of damping zone 

boundaries, 3
fx  is the average free surface position. For constants in Eq. 

(16), 0.5 tα = ∆ , 4m = , 1n =  are used for the computations shown 

in this paper according to several prior test calculations. 

RESULTS 
 
A couple of two-dimensional numerical examples will be shown for 
both validation and demonstration of the present method.  
 
Numerical Wave Tank 
 
The computation condition is chosen from an experiment (Kashiwagi, 
1996). The characteristic length for the float of the wave maker is 

0.3776a m= , the period of the wavemaker motion is 7.343T g a = . 

The computation grid and time step adopted are shown in Table 1. The 
comparison of free surface elevation at x/a = 9.629 with both the 
experiment and the non-linear BEM calculation by Kashiwagi, which is 
shown in Fig. 2, is perfect for this case.  
 

 
Fig.2 Comparison of free surface elevations at x/a = 9.629 

 
 

Table 1 Computation condition for NWT 

Wave maker 
geometry a=0.0792m        b/a=2.5 
motion ( ) sin(2 )z t Z t Tπ=  

amplitude 0.6Z a =  

wave number 2 0.2, 0.4, 0.6, 0.8,1.0Ka a gω= =  

water depth d/a =7.6 
Grid and Time Step 

 grid number 300 (horizontal) 136 (vertical)×  

min grid spacing / 0.02 / 0.02x a z a∆ = ∆ =  

    time step 4/ 5 10t T −∆ = ×  
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Fig.3 Comparison of first-order hydrodynamic forces 
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Fig.4 Comparison of second-order hydrodynamic forces 
 
In Fig.3 and Fig.4 the hydrodynamic forces acting on the wavemaker 
are compared. The computation conditions are chosen from a forced 
oscillation experiment (Yamashita, 1977) with a wedge. The 
computation conditions are shown in Table 1. Except for the damping 
coefficients, the accuracy of present calculations is comparable to that 
of the non-linear BEM calculations. 
 
2-D Wave-Body Interaction 
 
A two-dimensional numerical simulation on the interaction of floating 
body and non-linear waves is carried out. The general arrangement in 
the computation is shown in Fig.1. The computation condition for the 
wave tank is the same as that for Fig.3 and Fig.4. The parameters for 
the wavemaker are shown in Table 1, and the wave number of Ka = 0.4 
is used. The dimensions for the floating body are: 1 3.8l a = , 

2 1.4l a = , 1 1.0h a = , 2 0.8h a = , 3 0.2h a = . The grid number used 

for the calculation is 500 145× .  
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Fig.5 Interaction of floating body and non-linear waves 

 
Fig.5 shows the calculated flow fields around the floating body at 
t/T=16.0, 16.4, 16.8, 17.2. It can be found that the extreme non-linear 
phenomena such as water on deck, wave breaking, vortex shedding are 
successfully simulated by the present numerical method. 
 
CONCLUSIONS 
 
This paper described a new numerical simulation method for the 
extreme wave-body interactions that is based on CIP and CCUP 
method. The improvement of the method as well as extension to three-
dimension version is now in progress. Several 2-D numerical 
simulations have demonstrated the capability of this method, and it is 
expected that by further development this numerical method will 
become a powerful tool in seakeeping researches. 
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