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1. Intr oduction

At the 16th IWWWFB we presentedresultsfor the deformationof a VLFP with constantelastic
parameters.Theshort-wave theorywe presentedmadeuseof an integral-differentialequation.The
theoryis extendedfor finite waterdepthmakinguseof aspecialchoiceof theGreen’s function.In this
presentationweapplytheraymethodto theinhomogeneouscase.Theconstantparametercaseserves
asa canonicalproblemto generatetheedgeor’initial’ conditions.Numericalresultsareshown.

2. Mathematical formulation

Thefluid is incompressible,sowe introducethevelocitypotentialV
�
x � t ��� ∇Φ

�
x � t � , whereV

�
x � t � is

thefluid velocity vector. We assumewavesin still water. HenceΦ
�
x � t � is a solutionof theLaplace

equation
∆Φ � 0 in thefluid, (1)

togetherwith thelinearisedkinematiccondition,Φz � wt , anddynamiccondition,p� ρ ��� Φt � gw,
at thelinearizedfreewatersurfacez � 0, wherew

�
x � y� t � denotesthefreesurfaceelevation,andρ is

thedensityof thewater. Thelinearisedfreesurfaceconditionoutsidetheplatformbecomes:

∂2Φ
∂t2 � g

∂Φ
∂z

� 0 at z � 0 and
�
x � y�
	�� , (2)

The platform is assumedto be a thin layer at the free-surfacez � 0, which seemsto be a good
modelfor a shallow draft platform. Theplatformis modelledasanelasticplatewith zerothickness.
To describethedeflectionw

�
x � y� we applytheisotropicthin platetheory, which leadsto anequation

for w of theform:

m
�
x � y� ∂2w

∂t2 �� �
∂2

∂x2 � ∂2

∂y2 � �
D
�
x � y� � ∂2w

∂x2 � ∂2w
∂y2 ��� � p � z� 0 � (3)

wherem
�
x � y� is themassof unit areaof theplatformwhile D

�
x � y� is its equivalentflexural rigidity.

Weapplytheoperator∂
∂t to (3) andusethekinematicanddynamicconditionto arriveat thefollowing

equationfor Φ atz � 0 andin theplatformarea
�
x � y�
	�� :���

∂2

∂x2 � ∂2

∂y2 � �
D
�
x � y�
ρg

�
∂2

∂x2 � ∂2

∂y2 ��� � m
�
x � y�

ρg
∂2

∂t2 � 1 � ∂Φ
∂z � 1

g

�
∂2

∂t2 � Φ � 0 � (4)

The freeedgesof theplatformarefreeof shearforcesandmoment.We assumethat the radius
of curvature,in thehorizontalplane,of theedgeis large. Hence,theedgemaybe consideredto be
straightlocally. We thenapproximatetheboundaryconditionsat theedgeby:

∂2w
∂n2 � ν

∂2w
∂s2 � 0 and

∂3w
∂n3 � �

2 � ν � ∂3w
∂n∂s2 � 0 � (5)



whereν is Poisson’s ratio, n is in thenormaldirection,in thehorizontalplane,alongtheedgeands
denotesthearc-lengthalongtheedge.At thebottomof thefluid region z �� h we have

∂Φ
∂z

� 0 � (6)

Theharmonicwave canbewritten asΦ
�
x � t ��� φ

�
x � e� iωt . Dueto thelarge lengthscalesandelastic

parametersinvolvedwe introducedimesionlesscoordinatesandparametersin thefollowing way:

x��� x
L
� h��� h

L
� K � ω2L

g
� µ � mω2

ρg
����� DK4

L4ρg

. Theparametersµ and � areof orderonefor largevaluesof K. In a practicalsituation,whereL is
of theorderof 1000meteranda normalseaspectrum,this is thecase.After droppingtheprimeswe
obtainatz � 0 ���

∂2

∂x2 � ∂2

∂y2 � � � � x � y�
K4

�
∂2

∂x2 � ∂2

∂y2 ��� � µ
�
x � y� � 1 � ∂φ

∂z
� Kφ � 0 � (7)

Theundisturbedincidentwaveequals

φinc � x� � gζ∞

iω
cosh

�
k0
�
z � h�

cosh
�
k0h� exp ! ik0

�
xcosβ � ysinβ �#"�� (8)

whereζ∞ is thewave height,ω the frequency, while thewave numberobeys thedispersionrelation,
k0 tanh

�
k0h�$� K, for finite waterdepth. We contimuewith the deepwatercaseh � ∞, henceK �

k0 � ω2L � g, andwe assumethat thepotentialunderneaththeplatecanbewritten asa superposition
of ray-modesolutionsasfollows:

φ
�
x � K �%� ∑

n
αn
�
x � K � eiKSn & x' � (9)

whereSn
�
x� is thephasefunction andαn

�
x � K � the amplitudefunction of thenth mode. In (9) each

modeis writtenasa regularseriesexpansionwith respectto inversepowersof iK ,

αn
�
x � K �%� N

∑
j � 0

αn ( j � x��
iK � j � o

�)�
iK � � N �*� (10)

Wenow droptheindex n of themodefor awhile. Insertionof (9) into theLaplaceequation(1) gives

� K2α∇3S + ∇3S � iK
�
2∇3α + ∇3S � α∆3S� � O

�
1��� 0 � (11)

Thesubscript3 is usedto indicatethethree-dimensional∇ and∆ operators.If no subscriptsareused
theoperatorsaretwo-dimensionalin thehorizontalplane.Next we insert(10) andcompareordersof
magnitudein (11). This leadsto asetof equationsfor Sandα0 to besatisfiedin thefluid region:

O
�
K2 � : ∇3S + ∇3S � 0 � (12)

O
�
K1 � : 2∇3α0 + ∇3S � α0∆3S � 0 � (13)

Wenow insert(9) into theconditionat z � 0 (7). Thefirst two termsin theexpansionbecome

O
�
K1 � : ,-� � x � y� � S2

x � S2
y � 2 � µ

�
x � y� � 1 . iSz � 1 (14)



andO
�
K0 � :

α0 �0/ ∂
∂z

�
S2

x � S2
y � 2 � 2Sz

�
∂
∂x

Sx
�
S2

x � S2
y � � ∂

∂y
Sy
�
S2

x � S2
y �1�32 � (15)

α0z , � � x � y� � S2
x � S2

y � 2 � µ
�
x � y� � 1 . � �

4 � ∇α0 + ∇S � 2α∇ �4+ ∇S� Sz
�
S2

x � S2
y �%� 0 �

If we write r � iSz andcombine(12)with (14weobtainthedispersionrelationat z � 0� � � x � y� r4 � µ
�
x � y� � 1� r � 1 � (16)

combinedwith
S2

x � S2
y � r2 � (17)

Thelastequationhasthesameformasthewell known eikonalequationin geometricaloptics,however
in this casethe right-handsideis given by an implicit relation(16). In the caseof constantelastic
coefficientsr is a constantandtheray arestraightlinesasmaybeexpected.We assumethat thereis
apropagatingwavesolutionwith a real-valuedphasefunctionS. Thecharacteristics(rays) become:

dx
dσ

�5� Sx � dy
dσ

�4� Sy �
dSx

dσ
��6� xr

5 � dSy

dσ
��7� yr

5 � dS
dσ

�5� r2 � (18)

with �8� �
5 � r4 � µ � 1�)� r andσ theparameteralongtheray.

To obtainanequationfor theamplitudeα0, atz � 0, weusetheequationin thefluid (13) to elim-
inatethez-derivativesin (15). Thesecondorderderivative Szz is obtainedby meansof differentiation
with respectto zof (12). Wefinally getfor variable � andconstantµ

dα0

dσ
�� α0M ! S"�� (19)

wheretheoperatorM ! S" is definedas:

M ! S" � x � y�3� dr
dσ

, 16r4 �9� 1
r . �:� � Sxx � Syy � � 4 � r5 � 1� � 4r4 ∂ ;

∂σ

8� r5 � 2
� (20)

In principlewecansolvetheseequationsif initial conditionsfor thewave-modesareavailable.We
have onetravelling wave-modeandtwo evanescentmodes.Theproblem,however, is thatwe cannot
derive a setof initial conditionsfor theamplitudes.Oneshouldthink of writing thefield outsidethe
platformasasuperpositionof anincidentanda reflectedwave. Sowe have four unknown coefficient
to determine,while thereareonly two conditionsattheedgeof theplate.Onemaytry to imposesome
matchingconditions,suchascontinuityof velocity andpotential.This kind of conditionshold in the
fluid domainandnot at thez � 0 only. Thefactthatthez-dependency of thepotentialsdescribedare
differentunderneaththeplatformandoutsidetheplatformmake it impossibleto succeedin matching
thetwo fields.

3. Initial conditionsand results

We restrictourselves to the casethat the wavesareperpendicularto the edgeof the platform. For
thecaseof deepwaterit canbeshown that threemodesat theplatearesufficient to receive accurate
results.If thedepthbecomessmallermoremodescanbetakeninto account.



Two conditions,for theamplitudefunctions,at theedgeof theplatformfollow directly from the
boundaryconditionsat theedge(5), while thethird onebecomes

3

∑
n� 1

K
� � � 0� S4

ξ � µ
�
0�)�

k0 � KSξ
an � ζ∞ � (21)

Theseboundaryequationfollow from an analyticevaluationof the differential-integral formulation
describedearlier, see[1,2]. Firstweshow acomparisonwith resultsof Takagietal [3] for afinite strip
with constantcoefficients,andtheeffect of reflectionandmultipe reflectionfor a similar case.The
resultsof Takagiareobtainedby a differentasymptoticmethod,no differencescanbedistinguished
in thefigure. In thenext two figuresresultsfor a semi-infiniteplateareshown. Therigidity is varied
over anfinite interval by meansof acontinuous(sine-)function.
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(b) Multiple reflectionλ0 = L > 0 ? 3.
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Question by : T. Miloh 
I thought that the ray method is rather limited for very short waves and for this reason I was 
impressed by the almost perfect agreement with Takagi’s data that you presented which show 
(surprisingly ??) that the ray method can be used for much longer wave lengths. 
 
Author’s reply:  
The ray method sometimes gives rather accurate results for shorter waves than expected. In 
this case it is expected that the asymptotic results may be rather close to the exact values. In 
my opinion this is due to the fact that the case we consider has a very simple wave structure 
(plain waves). The length scale involved is the length of the interval where the coefficients 
change. The comparison with the results of Takagi does not concern the ray method results, 
but the method to solve the canonical problem to obtain the missing initial condition for the 
ray solution. The method consists of a superposition of exponential functions describing the 
exact solution, so it is not so surprising that these results coincide so well. For the asymptotic 
results for the inhomogeneous problem no data obtained by other methods are available. 
 
----------------------------------------------------------------------------------------------------------------- 
Question by : K. Takagi 
Is your method applicable for a real VLFS, which has a jump of the rigidity, without any 
difficulty ? 
 
Author’s reply:  
The asymptotic ray method is not applicable directly to this problem, due to the fact that 
implicitely I used the length of the interval where the coefficients change as length scale. 
However, the original method used to compute the initial conditions (the canonical problem) 
can be extended to solve this problem exactly. The two regions may be connected in several 
ways, if we make a rigid connection we may employ in the 2-D case continuity of w(x) and 
its first three derivatives or for beam seas the Lamé constants may be varied or one may keep 
the connected plates free of each other. The missing boundary conditions (three in this case) 
in all these cases are obtained as before. There is no need to match three eigenmode 
expansions. The formulation of the integral equation guarantees continuity of the velocity 
potential and its derivatives. I will propose to the organisers of next workshop an abstract 
with, among others, results of this extension. 
 
 


