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SUMMARY
The Green function for wave-body interaction in a
channel of rectangular cross section is discussed in this
paper. The results from an asymptotic analysis are
outlined, which lead a numerical solution and some
insight into the singular or resonant behavior of the
Green function. Also presented is a preliminary
analysis towards developing an efficient approximation
of the channel Green function.

INTRODUCTION
Apart from direct engineering applications, the study of
wave-body interaction in a channel is very important
for the quantification of tank wall effects on offshore
hydrodynamic model testing. It also has relevance in
modelling classical field problems between parallel
planes that arise in other physics such as acoustics,
electrostatics and electro-magnetics [1].

In the context of potential theory, [2, 3, 4, 5, 6],
among others, have numerically studied the
hydrodynamic channel problem based on the Green
function method. It is understood that the Green
function calculation is the most difficult and critical
part in the channel effects modeling no matter it is
formulated based on the method of images, the method
of eigen-functions, or in the form of closed integrals. It
appears that there is still a need in understanding the
characteristics of the channel Green function and in the
facilitation and acceleration of the Green function
calculations.

The work to be presented in this paper is a
continuation of the study published in [6]. The channel
Green function is formulated based on the image
representation. The complete series of open-sea Green
function images is regrouped as images in a near field,
images in a middle field and the rest of the infinite
number of images in the complementary far field. The
part of the Green function induced by the near field
images is evaluated in an exact manner based on the
calculation of the open-sea Green function. The part
induced by the middle field images is estimated by
evaluating in an exact form the propagating waves,
ignoring the evanescent wave effect. And finally, the
part of the Green function induced by the far field
images is asymptotically expressed by a plane-wave
approximation plus a parabolic correction, which have
equivalent single integral forms instead of the slowly
convergent series representation. It is analytically
demonstrated that the channel Green function has a
square-root singular behaviour near the channel-

resonant frequencies.  The analysis shows that the
influence of the infinite number of images located far
from the observation point makes a significant
contribution to the channel wall effects. The asymptotic
analysis also provides a possibility to further replace
the integral representation of the far field solution by an
economized polynomial approximation.

BASIC FORMULATION
The Cartesian coordinate system o-xyz is defined in this
paper as an �equilibrium� set of axes with ox along the
longitudinal direction of the wave channel. The z = 0
plane corresponds to the calm water level, and z is
positive upwards. The x-z plane is coincident with the
centre-plane of the tank. We assume an ideal fluid and
an irrotational flow; ω  is the oscillating frequency of
the fluid motion and the time dependence is of the form

te ωi− . The channel Green function is denoted by
),( xx ′G  which represents the spatial part of the

velocity potential at a field point ),,( zyx=x  in the
wave channel due to a pulsating source of unit strength
at the point ),,( zyx ′′′=′x . The channel Green function
must satisfy the following governing equations
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where δ  is the Dirac delta function, g the gravitational
acceleration; h denotes the water depth, b the width of
the wave tank. In addition the Green function must
satisfy a radiation condition that states that, at infinity,
G is associated only with waves that propagate away
from the source.

The solution of (1) can be obtained by considering
an infinite number of images of the source at the
positions ),,( zyx mm ′′′=′x  with the y -coordinate my′
determined by mbyy m

m +′−=′ )1( . That is
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where ),( mm GG xx ′=  is the open-sea Green function
satisfying the first three equations in (1), which



represents the potential at the field point x due to the m-
th image of the source at the point mx′ . Obviously,

0=m  represents the source itself.
The open-sea Green function mG  is given in [7] in

the form of principal-value integral as
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with 22 )()( mm yyxx ′−+′−=ρ ; 22 )( zzr mm ′−+= ρ ;
22 )2( hzzr mm +′++=′ ρ ; 0J  is the first kind of Bessel

function; the other functions are defined as
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where g/2ων = .
Alternatively, a series expansion of (3) presented by

John [8], which is much more efficient when mρ  is not
small, can be written as
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where the first term represents the propagating wave
and the summation describes the evanescent wave
effect; 0H  and 0K  are respectively the Hankel
function of the first kind and the modified Bessel
function; nk  are defined as the evanescent wave
number, which are real positive solutions of the
equation ghkk nn /)tan( 2ω−= . The z-dependent
functions in (6) are defined by
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Many efforts have been made to achieve accurate

and efficient evaluation of the open-sea Green function
based on (3) (e.g. [9]). The following describes a
procedure for the more difficult channel problem as
formally defined by (2).

ASYMPTOTIC APPROACH
Since the calculation of the open-sea Green function
may be gradually simplified as the distance between the
field and the image point increases, we may rewrite Eq.
(2) as

FMN GGGG ++=′),( xx                                           (9)

where NG  represents the potential induced by the
source and its nearest images that require a complete
evaluation;  MG  defines the potential induced by a
finite series of images in the middle field where the
evanescent wave effect as described in (6) can be
neglected; FG  represents the potential induced by the
remaining infinite number of images in the far field
where further approximation may be introduced. NG
and MG  may be expressed as
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Provided all the remaining images are far enough
from the field point, FG  can be approximated by a
plane-wave approximation plus a parabolic correction
[6] as
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where   /2e 4/i ππ−=c , )(0 xxkX ′−=  and
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with bkB 0= , the non-dimensional channel width; lY
)4,3,2,1( =l  are the non-dimensional transverse

distances between the field point and the nearest four
images in the far field,
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In order to guarantee an absolute accuracy of 510−

for ignoring the evanescent waves in the middle and far
fields, the truncation number 0M  is approximately
bounded by

      )/7(int10 bhM +≥                                                (15)

The truncation number 1M  determines the distance
between the field point and the nearest images in the far
field, lY , and hence the convergence and accuracy of
the asymptotic solution (12). In order to guarantee an
absolute accuracy of 510−  for replacing the far field
images by the asymptotic solution, we may set up the
following criterion
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Since the negligence of the evanescent wave effect is a
precondition for the far field approximation, another
obvious restriction has to be assigned for 1M , i.e.

12 01 +≥ MM . In the case of holding the equality, all
the images are included in either near or far field.

The summation over the infinite number of images
in the far field is now expressed in (12) by the lY -
dependent functions ),(1 BYlη  and ),(2 BYlη  which have
single integral representations as given by (13) and
(14). The single integral representations are more
advantageous than the slowly convergent infinite series
due to the fact that the kernels are smooth functions
with an exponentially decaying component; the
numerical evaluation is then easier and faster
convergent.

In is not difficult to see that when πnB → ,
L ,3 ,2 ,1 ,0=n , ),(1 BYlη  is divergent.  In other words,

the plane-wave term in (12) exhibits a very important
feature of the channel wall effects, that is, channel
resonance occurs when the channel width is an integer
multiple of half the wavelength. No matter how large
the truncation number 1M  is, the singularity exists in
the far field solution. Therefore, it is difficult to model
the channel resonance by taking only a finite number of
images in the Green function calculation.

By defining πε nB −= 2  with )/int( πBn = , we
may rewrite the integral in (13) as
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In order to derive a leading-order approximation to
the channel resonance, we notice that in this case the
main contribution to the integral of ),(1 BYlη  is near the
singular point 0=t . Therefore, by approximating

)sign(ie πnBεt −+−  by )sign(i1 πnBεt −−+ , one has
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where 
2
1V  and 

2
3V  are the so-called Gillbert�s integrals

or Gillbert�s type of Lommel functions [10],
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Substitution of (21) into (12) gives
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This indicates that the real part of FG  has a one-sided
square-root singularity when πnB →  from the smaller
side, while the imaginary part of FG  has the singularity
when πnB →  from the greater side. The asymptotic
expression (22) is independent of lY . It holds also for
the infinite propagating wave series that includes all the
mirror images. As the evanescent wave modes do not
exhibit wave resonance, it may be expected that the
channel Green function G  contains the same
singularity as in FG .

Given a certain water depth, Figure 1 compares the
computational results for the open-sea Green function
and for the channel Green function of three different
channel widths based on (10) � (12).

TOWARDS A CHEBYSHEV APPROXIMATION
In order to accelerate the computation of the lY -
dependent integrals in ),(1 BYlη  and ),(2 BYlη , one may
think of a multivariate economized polynomial
approximation based on Chebyshev expansions [9].
Since ),(2 BYlη  is a smooth and regular function the
approximation of it may be achieved relatively easily
provided the integral is evaluated accurately. In the
following, we propose an idea towards an economized
polynomial approximation of the singular function

),(1 BYlη .
By virtue of the asymptotic expression (18), the

integral (17) may be rewritten as
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is a smooth and regular function that may be
approximated through Chebyshev expansions. In Eq.
(23), the Gillbert�s type of Lommel functions may as
well be approximated through Chebyshev expansions.
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Figure 1. Real part (up) and imaginary part (down) of the channel Green function vs. wave number.
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