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SUMMARY

The linear 2-D water-wave problem, describing small oscillations of a horizontal cylinder is considered. The
cylinder is submerged in a stratified unbounded fluid, which consists of two layers of different density and
infinite depth, and intersects the interface. A system of boundary integral equations for the problem is derived,
behaviour of its solution near the intersection points is studied. Asymptotic formulae for the added mass and
damping coefficients at low frequency are derived. In the case of a circular cylinder the water-wave problem
is solved by the method of multipole expansion. The added mass and damping coefficients are calculated and
essential dependence of these values on a frequency of oscillations, on the difference of densities and on the
position of the cylinder with respect to the interface is shown. By the relation between the scattering and
radiation potentials by McIver (1996), the reflection coefficient is defined for the corresponding diffraction
problem.

1. STATEMENT OF THE PROBLEM

We use the Cartesian coordinates(x, y), where the vertical coordinatey is measured upwards. The interface
y = 0 separates the upper fluid with densityρ1 occupying the domainL(1) (|x| < ∞, y > 0) and the fluid with
densityρ2 = ρ1(1 + ε) (ε > 0) filling in the lower layerL(2) (|x| < ∞, y < 0). The fluids are assumed to be
inviscid and incompressible. The flow in each layer is potential and the interface-piercing cylinder undergoes
small oscillations in three possible degrees of freedom (sway, heave and roll) at a frequencyω. Body’s cross-
section is denoted byB and its wetted contourΓ = ∂B is divided by the interface into two partsΓ = Γ(1)∪Γ(2)

and intersects the interface at two pointsP± = (±b, 0). The one-side tangent toΓ(s) at P± and the interface

form the angleβ(s)
± measured through the fluid (here and subsequently the superscripts is equal to 1 for the

upper layer and 2 for the lower one). The two-layer fluid represents a limiting case of a steep pycnocline. The
radiation and diffraction problems for a circular cylinder located beneath a pycnocline in a constant-density
layer have been considered by Sturova (1999).

The disturbed oscillatory motion of the fluid is assumed to be steady, and the velocity potentials can be
written as

Φ(s)(x, y, t) = Re
[
iω

3∑

j=1

ηjφ
(s)
j (x, y) exp(iωt)

]
,

whereφ
(s)
j , j = 1, 2, 3, are radiation potentials due to motions of the cylinder with unit amplitude in the three

degrees of freedom;ηj are corresponding motion amplitudes.
The radiation potentials satisfy the Laplace equation inside the domains occupied by the fluid

∆φ
(s)
j = 0, (x, y) ∈ W (s) = L(s) \B, s = 1, 2. (1)

The linearized kinematic and dynamic boundary conditions on the interface(y = 0) outside the body are

∂φ
(1)
j

∂y
=

∂φ
(2)
j

∂y
, (1 + ε)νφ

(2)
j − νφ

(1)
j = ε

∂φ
(1)
j

∂y
, ν =

ω2

g
, (2)



respectively, whereg is the acceleration due to gravity. Besides, far from the interface we have

∇φ
(s)
j → 0 as (−1)s+1y → +∞, s = 1, 2. (3)

The boundary condition on body’s wetted contour is as follows:

∂φ(s)
j

∂n
= nj , (x, y) ∈ Γ(s), (4)

wheren = (nx, ny) is the inward normal to the contourΓ. We shall use the notationn1 = nx, n2 = ny,
n3 = (y − y0)n1 − (x − x0)n2, wherex0, y0 are coordinates of the centre of the roll oscillations. In the far
field a radiation condition should be imposed that requires the radiated waves to be outgoing. Besides, since
the domainsW (s) have corner points, where solution to (1)–(4) can have strong singularities, local finiteness
of energy should be preposed ∫

E∩W (s)

∣∣∇φ
(s)
j

∣∣2 dxdy < ∞. (5)

HereE is a compact domain includingP±.
The hydrodynamic loads by the oscillationsF = (F1, F2, F3) are typically written in matrix form, and,

omitting the hydrostatic term, we have

Fk =
3∑

j=1

ηjτkj , τkj = ω2
2∑

s=1

ρs

∫

Γ(s)

φ
(s)
j nk dΓ = ω2µkj − iωλkj , (6)

whereµkj andλkj are the added mass and damping coefficients, respectively.

2. BOUNDARY INTEGRAL EQUATIONS

Solution to (1)–(5) for the body of arbitrary shape is sought in the form of a single layer potential. We write

φ
(s)
j (z) =

2∑

`=1

∫

Γ(`)

σ
(`)
j G(s,`)(z, ζ) dΓζ , z = x + iy, ζ = ξ + iη, s = 1, 2,

whereσ
(`)
j is an unknown density andG(s,`)(x, y; ξ, η) is the Green function of the problem (1)–(3),s and`

are such that(x, y) ∈ L(s), (ξ, η) ∈ L(`). Expressions for the Green function are given by Gorgui & Kassem
(1978).

From condition (4) we arrive at the system of integral equations

π σ
(s)
j (z)−

2∑

`=1

∫

Γ(`)

σ
(`)
j (ζ)

∂G(s,`)

∂nz
(z, ζ) dΓζ = nj(z), s = 1, 2. (7)

The operator of the system is not compact inL2, but it is Fredholm’s one in the weight Banach space of
continuous inintΓ(s) functions having the finite norm||σ||κ = sup

{|y|1−κ|σ(z)| : z ∈ intΓ(s)
}

, where0 6
κ 6 1 such thatmax

s=1,2
max±

{
sinκ|π − 2β

(s)
± |/ sinκπ

}
< 1.

Using general theorems on asymptotics of solutions in domains with non-smooth boundary (see e.g.,
Nazarov & Plamenevsky, 1994) we find asymptotics ofφ

(s)
j and the densitiesσ(s)

j (z) at the end points of

Γ(s). We consider the left pointP = P− = (−b, 0), omitting the subindex, so that e.g.β(s) = β
(s)
− . Let (r, ϑ)

be the polar coordinates with centre atP , such thatx = −b− r cosϑ, y = −r sinϑ. Then,

σ
(s)
j (r) ∼ a(s) + b(s)rλ(s)

, λ(s) =
2β(s) − π

2(π − β(s))
,

wherea(s), b(s) are some (non-zero, in general case) constants. From the latter formula it follows that for
β

(s)
± < π

2 the functionσ
(s)
j generally has a weak singularity atP with exponentλ(s) ∈ (−1/2, 0). This fact

should be taken into account, in particular, when the system (7) is solved numerically.



3. MULTIPOLE EXPANSION METHOD

In order to solve the problem for the case of the circular cylinder the method of multipole expansions is used by
analogy with the paper by Eatock Taylor & Hu (1991), where the 2-D and 3-D wave diffraction and radiation
problems were considered for the bodies floating on a free surface of a homogeneous fluid.

Let the circular cylinder contourΓ be defined asx2 + (y − h)2 = a2, wherea is its radius andh is
the vertical coordinate of cylinder’s centre. For the circular cylinder only horizontal(j = 1) and vertical
oscillations(j = 2) should be considered. We write a solution to (1)–(5) in the form

φ
(s)
1 =

∞∑

m=1

AmS(s)
m , φ

(s)
2 =

∞∑

m=0

BmC(s)
m , (8)

whereS
(s)
m , C

(s)
m are anti-symmetric and symmetric multipole potentials, respectively, satisfying all the condi-

tions of the problem except (4); the latter is used to find the unknown coefficientsAm andBm.
We introduce two auxiliary polar systems of coordinates(r, θ) and(R, τ):

r =
√

x2 + (y − h)2, θ = arctan[x/(y − h)], R =
√

x2 + (y + h)2, τ = arctan[x/(y + h)].

Then, the multipole potentials can be written as follows

S
(i)
1 = −aej+1k0V

(i)
s , S

(j)
1 = a

(
sin θ

r
+

sin τ

R
+ ej+1k0V

(j)
s

)
, S(i)

m = ±ej+1k0a
m

m− 1
sin(m− 1)θ

rm−1
,

S(j)
m = am

{
sinmθ

rm
− (−1)m sinmτ

Rm
+

k0

m− 1

[
±sin(m− 1)θ

rm−1
+ (−1)me1

sin(m− 1)τ
Rm−1

]}
,

C
(i)
0 = ej+1

[
ln

r

a
+ V (i)

c

]
, C

(j)
0 = ln

r

a
± e1 ln

R

a
− ej+1V

(j)
c , C

(i)
1 = ∓aej+1k0 ln

r

a
,

C
(j)
1 = a

[
cos θ

r
− cos τ

R
+ k0

(
∓ ln

r

a
− e1 ln

R

a

)]
, C(i)

m = ±ej+1k0a
m

m− 1
cos(m− 1)θ

rm−1
,

C(j)
m = am

{
cosmθ

rm
+ (−1)m cosmτ

Rm
+

k0

m− 1

[
±cos(m− 1)θ

rm−1
− e1(−1)m cos(m− 1)τ

Rm−1

]}
.

Herem > 2, k0 = ν/e1, e1 = ε/(2+ε), e2 = 2/(2+ε), e3 = (1+ε)e2 and we use the indicesi = 3/2∓1/2,
j = 3/2 ± 1/2. Under this notation in the preceding formulas we should fix either lower or upper sign in
symbols±,∓. The upper (lower) signs correspond to the case when the centre of the cylinder is located in the
upper (lower) layer. Also,

V (p)
s (x, y) = pv

∫ ∞

0

ekYp

k − k0
sin kx dk − iπek0Yp sin k0x

= Im
[
eZp E1(Zp)

]
+ πek0Yp sign(x)

(
cos k0x− i sin k0|x|

)
,

V (p)
c (x, y) = pv

∫ ∞

0

ekYp

k − k0
cos kx dk − iπek0Yp cos k0x = Re

[
eZp E1(Zp)

]− iπek0Yp
(
cos k0x− i sin k0|x|

)
,

wherepv indicates the principal-value integration,Yp = (−1)py − |h|, Zp = k0

[
ix + Yp

]
, p = 1, 2, andE1 is

the exponential integral.
Substituting the series (8) into the boundary condition (4), sequentially multiplying it bysinnθ andcosnθ

(n > 0) and integrating over the cylinder surface, we obtain an infinite system of linear equations for finding
unknown coefficientsAm andBm. In the present work this system is solved numerically by the reduction
method. FindingAm andBm allows us to compute other characteristics of fluid motion for the radiation and
diffraction problems. The damping coefficientsλjj can be found either from (6) or by the energy relation
in terms of far-field waves amplitudes (see Eatock Taylor & Hu, 1991). The reflection coefficientRd in the
diffraction problem is defined by the formulaRd = 1

2

[
B0/B∗

0 −A1/A
∗
1

]
, where∗ means complex conjugate.
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Figure 1: Added mass (a) and damping (b) coefficients forh/a = −0.5.

4. NUMERICAL RESULTS

As a test for the suggested numerical scheme we use the results of Greenhow & Ahn (1988) and Eatock
Taylor & Hu (1991), who computed hydrodynamical loads for the circular cylinder partially submerged in
the homogeneous fluid having the free surface. The same configuration with the cylinder partially submerged
in the lower layer appears in the limit caseε → ∞ of the considered problem with the two-layer fluid. For
h/a = −0.5 the maximum difference between our computations, where 50 members of the series (8) are taken,
and the values of hydrodynamical loads given as per the table by Eatock Taylor & Hu (1991) does not exceed
1%. At low frequency the numerical results are also in a good agreement with the asymptotic formulae (not
presented here for economy of space) which we obtained for the added mass and damping coefficients.

Some of the numerical results are presented in Fig. 1, where hydrodynamic loads for the homogeneous
(ε = ∞) and two-layer fluids(ε = 0.3; 0.03) are compared. It is observed that for oscillations of interface-
piercing cylinder in the two-layer fluids, the values of added mass coefficients as a rule exceed the values
computed for the same cylinder piercing the free surface of homogeneous fluid filling in the lower layer. It
is found that for the homogeneous fluid and−1.1 6 h/a 6 −0.5 the added mass coefficientµ11 can have
negative values, but this feature was not observed for either of the considered two-layer fluids.

5. CONCLUSION

For a body of arbitrary shape a system of boundary integral equations is derived which can be used to find
a solution to the problem in the form of a single layer potential. It is shown that the potential density can
have a singularity of defined type at the contour points belonging to the interface. For the circular cylinder the
problem is solved by the multipole expansion method. Influence of stratification and position of the cylinder
at the interface is shown to be essential for radiation loads and reflection coefficient in the diffraction problem.
Unlike the case of the cylinder totally submerged in one of the layers the radiation loads depend on the type of
oscillations, and the reflection coefficient is not identically zero. The results can be extended to the 3-D case.
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