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SUMMARY

The two-dimensional sloshing problem is considered in a half-plane covered by a rigid dock with two equal
gaps. It is proved that the antisymmetric (symmetric) sloshing eigenvalues are monotonically decreasing (in-
creasing) functions of spacing between gaps and formulae for their derivatives in terms of energy integrals are
obtained. It is established that the eigenvalues are simple, and their asymptotics are found as spacing tends to
infinity. Results are illustrated numerically.

1. INTRODUCTION

Sloshing problem in a half-plane covered by a rigid dock with a gap has received much consideration (see [2]
and references cited therein) because eigenvalues of this problem furnish universal upper bounds for sloshing
frequencies in the two-dimensional domains having the same free surface. Here we consider the case of a dock
with two symmetric gaps and establish that the corresponding eigenvalues are simple and depend monotonically
on spacing between gaps.

Let an inviscid, incompressible, heavy fluid occupy the half-planey < 0 and be covered by a rigid dock so
that the free surface consists of two gaps{b < |x| < b + 1, y = 0} (it is convenient to use non-dimensional
Cartesian coordinates such that each gap has a unit length). Neglecting the surface tension, we consider free,
small-amplitude, time-harmonic oscillations of fluid and its motion is assumed to be irrotational. Since the fluid
domain is symmetric about they-axis, sloshing modes are eithersymmetricor antisymmetric, that is, are even
or odd functions ofx respectively, and so we restrict our considerations to the quadrant{x > 0, y 6 0}.

2. ANTISYMMETRIC MODES

The boundary value problem for a time-independent, antisymmetric velocity potentialu(−)(x, y) is as follows:

∇2u(−) = 0, x > 0, y < 0, (1)

u(−) = 0, x = 0, y < 0, (2)

u(−)
y = 0, 0 < x < b, x > b + 1, y = 0, (3)

u(−)
y − ν(−)u(−) = 0, b < x < b + 1, y = 0. (4)

Solutions to (1)–(4) are sought in the natural class of functions having finite kinetic energy, that is,
∫ 0

−∞

∫ +∞

0

∣∣∇u(−)
∣∣2 dxdy < ∞. (5)

This condition shows thatu(−) can be assumed to be a real function. Moreover, (5) provides thatu(−) is
continuous up to thex-axis and∇u(−) has a logarithmic singularity at the dock tips. Our aim is to investigate
properties of eigenvaluesν(−)(b) and eigenfunctionsu(−)(x, y; b) (sloshing modes) as functions ofb, but,
unless it is necessary, we do not indicate this dependence for the sake of brevity.

By virtue of

u(−)(x, y) =
1
2π

∫ b+1

b
w(−)(ξ − b) log

(x + ξ)2 + y2

(x− ξ)2 + y2
dξ, (6)
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Figure 1:ν(−)
1 , . . . , ν

(−)
5 (dashed lines) andν(+)

1 , . . . , ν
(+)
5 (solid lines) as functions ofb ∈ [0, 1].

(1)–(5) is equivalent to the following spectral problem:

w(−)(x) =
ν(−)

π

∫ 1

0

[
log(x + ξ + 2b)− log |x− ξ|

]
w(−)(ξ) dξ, x ∈ (0, 1), (7)

where the integral operatorK(−) in the right-hand side is a compact, selfadjoint, positive operator inL2(0, 1).
In order to prove the equivalence of (1)–(5) and (7), one has to use properties of the single layer potential (6).
The null-space ofK(−) is trivial.

Applying known results for weakly singular, selfadjoint, positive, integral operators including Jentsch’s
theorem (see, for example, [6], sect. 20), we find that for a fixedb > 0, there exists a sequence of eigenvalues

0 < ν
(−)
1 < ν

(−)
2 6 . . . 6 ν(−)

n 6 . . . such that ν(−)
n →∞ as n →∞;

the eigenvalueν(−)
1 is simple and the corresponding eigenfunctionw

(−)
1 (x) is continuous and non-negative in

[0, 1]. Further results on the simplicity of eigenvalues are formulated in sect. 4.
SinceK(−) depends onb > 0 continuously and the kernel ofK(−) is a monotonically increasing function

of b, the known results (see, for example, [5], sect. 95) yield that for eachn (= 1, 2, . . . ) eitherν(−)
n and

w
(−)
n (x) are continuous functions ofb > 0, andν

(−)
n decreases withb. Quantitatively, the rate of decreasing is

characterized by the following formula (its proof is analogous to that of (12) below):

dν
(−)
n

db
= −

∫ 0

−∞

∣∣∂x u(−)
n (0, y)

∣∣2 dy

/ ∫ b+1

b

∣∣u(−)
n (x, 0)

∣∣2 dx, b > 0 n = 1, 2, . . .

Fig. 1 shows that forn = 2, 4 the valuesν(−)
n (b) obtained from (7) (they are shown by dashed lines) are

sufficiently close to the limit values even forb = 1, and the limit values are equal to the antisymmetric sloshing
eigenvalues in a half-plane covered by a dock with a single gap of unit length (the latter eigenvalues are given
in [2]). This means that if the spacing between gaps is sufficiently large, then fluid oscillations in each gap take
place as if there is no other gap.

3. SYMMETRIC MODES

A real velocity potentialu(+)(x, y) of symmetric sloshing mode satisfies the same conditions (1) and (3)–(5)
asu(−)(x, y), and the parameterν(+) replacesν(−) in (4), but

u(+)
x = 0, x = 0, y < 0, (8)

must be imposed instead of (2). There is a trivial symmetric sloshing modeu
(+)
0 (x, y) ≡ 1 corresponding to

ν
(+)
0 = 0. It follows from Green’s formula that non-trivial symmetric eigensolutions satisfy

∫ b+1

b
u(+)(x, 0) dx = 0. (9)



The following representation:

u(+)(x, y) = − 1
2π

∫ b+1

b
w(+)(ξ − b) log

[
(x + ξ)2 + y2

)(
(x− ξ)2 + y2

)]
dξ, (10)

which is similar to (6), leads to the spectral problem:

w(+)(x) = −ν(+)π−1

∫ 1

0

[
log(x + ξ + 2b) + log |x− ξ|

]
w(+)(ξ) dξ, x ∈ (0, 1).

Unfortunately, it has no solution satisfying (9). The fact is that a function given by (10) and satisfying (9)
decays at infinity. At the same time, any symmetric eigenmode must have a non-zero limit as|z| → ∞.

Nevertheless, a spectral problem involving an integral operator with more complicated kernel can be ob-
tained in the present case. The starting point is the function

W (z; ξ) = − 1
π

{
log

4(z − ξ)
(1− 2z)(1− 2ξ)

− 1 + 2z

2
log

(
1 + 2z

1− 2z

)
− 1 + 2ξ

2
log

(
1 + 2ξ
1− 2ξ

)
+

1
2
− π i(z + ξ)

}

(z = x+ iy). It was derived in [1], whereReW (x, ξ) appeared as the kernel in the integral equation equivalent
to sloshing problem for the dock with the single gap{−1/2 < x < +1/2, y = 0}.

We introduce Green’s function

G(x, y; ξ) = 2−1 Re
{
W (z + b + 1/2; ξ + b + 1/2) + W (z − b− 1/2; ξ − b− 1/2)

+ W (z + b + 1/2;−ξ + b + 1/2) + W (z − b− 1/2;−ξ − b− 1/2)

− π−1
[
2b2 log(2b) + 2(1 + b2) log[2(1 + b)]− (1 + 2b)2 log(1 + 2b)

]}
,

which satisfies (1), (3), (5) and (8) as a function of(x, y); besides,
∫ b+1
b G(x, 0; ξ) dξ = 0. Then, by virtue of

u(+)(x, y) =
∫ b+1

b
w(+)(ξ − b) G(x, y; ξ) dξ,

sloshing problem for non-trivial symmetric modes is equivalent to the following spectral problem:

w(+)(x) = ν(+)

∫ 1

0
G(x + b, 0; ξ + b) w(+)(ξ) dξ, x ∈ (0, 1), (11)

where the integral operator in the right-hand side is a compact, selfadjoint operator in the subspace ofL2(0, 1)
consisting of functions which satisfy (9).

As in sect. 2, this yields that there exists a sequence of eigenvalues

0 < ν
(+)
1 6 . . . 6 ν(+)

n 6 . . . such that ν(+)
n →∞ as n →∞;

for eachn = 1, 2, . . ., eitherν(+)
n andw

(+)
n (x) are continuous functions ofb > 0 and these functions are

analytic forb > 0. The main result of the present section is the following identity:

dν
(+)
n

db
=

∫ 0

−∞

∣∣∂y u(+)
n (0, y)

∣∣2 dy

/ ∫ b+1

b

∣∣u(+)
n (x, 0)

∣∣2 dx, b > 0, n = 1, 2, . . . , (12)

which implies thatν(+)
n is a monotonically increasing function ofb > 0.

Proof. Let u
(+)
n (x, y; b) be a symmetric eigenmode corresponding to the sloshing eigenvalueν

(+)
n (b). The

above results imply thatν(+)
n (b) is a differentiable function ofb > 0. Let∆ be a sufficiently small number (such

thatb+∆ > 0). After extendingu(+)
n (x, y; b+∆) to the whole half-planey < 0 by means of the Schwarz Re-

flection Principle, we consideru(+)
n (x+∆, y; b+∆) defined in the closed quadrant{x > 0, y 6 0} even when

∆ < 0. The latter function satisfies the similar boundary conditions asu
(+)
n (x, y; b) on {0 < x < b, y = 0},

{b < x < b + 1, y = 0} and{b + 1 < x < +∞, y = 0}, respectively. The second Green’s formula for



u
(+)
n (x, y; b) andu

(+)
n (x + ∆, y; b + ∆) in {x > 0, y < 0} gives

∫ b+1

b

[
u(+)

n (x, 0; b) ∂y u(+)
n (x + ∆, 0; b + ∆)− u(+)

n (x + ∆, 0; b + ∆) ∂y u(+)
n (x, 0; b)

]
dx

=
∫ 0

−∞

[
u(+)

n (0, y; b) ∂x u(+)
n (∆, y; b + ∆)− u(+)

n (∆, y; b + ∆) ∂x u(+)
n (0, y; b)

]
dy

because (5) guarantees that the integral over a large quarter-circle tends to zero as its radius goes to infinity; the
homogeneous Neumann condition on the dock is also applied here. Using (8) and the Lagrange theorem in the
second integral, and the free surface conditions in the first one, we get

[
ν(+)

n (b + ∆)− ν(+)
n (b)

] ∫ b+1

b
u(+)

n (x, 0; b) u(+)
n (x + ∆, 0; b + ∆)dx

= ∆
∫ 0

−∞
u(+)

n (0, y; b) ∂2
x u(+)

n (θ(y)∆, y; b + ∆) dy,

where0 < θ(y) < 1 for y ∈ (−∞, 0). Letting∆ → 0 in this equation divided by∆ produces

dν
(+)
n

db

∫ b+1

b

∣∣u(+)
n (x, 0; b)

∣∣2 dx =
∫ 0

−∞
u(+)

n (0, y; b) ∂2
x u(+)

n (0, y; b) dy.

In order to obtain (12), it remains to transform the last integral using the Laplace equation and then applying
integration by parts. The integrated terms vanish because∂y u

(+)
n (0, y; b) satisfies the no flow condition on the

dock and decays at infinity.

As in the antisymmetric case, numerical computations show that for largeb the value ofν(+)
n (b) obtained

from (11) asymptotes then-th sloshing eigenvalue in a half-plane covered by a dock with a single gap of unit
length. Fig. 1 shows that forn = 1, 3, 5 the valuesν(+)

n (b) (they are shown by solid lines) are sufficiently close
to the described limit values even forb = 1.

4. SIMPLICITY OF EIGENVALUES

Here we formulate the following result.

All symmetric eigenvalues are simple for anyb > 0. For antisymmetric eigenvalues this property holds at
least forb = 0 and sufficiently small positiveb.

To the authors’ knowledge, there are only two papers treating the question of simplicity of the sloshing
eigenvalues. In [3], it is demonstrated that the first eigenvalue is simple, and a condition guaranteeing that the
second eigenvalue is simple is obtained in [4].

5. ACKNOWLEDGEMENT

The authors acknowledge a support from the Russian Foundation of Basic Research by the grant01-01-00973.

REFERENCES

[1] Davis A.M.J., Waves in the presence of an infinite dock with gap.J. Inst. Maths Applics6 (1970) 141–156.
[2] Fox D.W., Kuttler J.R., Sloshing frequencies.Z. angew. Math. Phys.34 (1983) 668–696.
[3] Kuttler J.R., A nodal line theorem for the sloshing problem.SIAM J. Math. Anal.15 (1984) 1234–1237.
[4] Kuznetsov N.G., A variational method of determining the eigenfrequencies of a liquid in a channel.PMM

USSR54 (1990) 458–465.
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Indeed, a symmetric mode has a non-zero limit at infinity; the asymptotics is as 
follows: )(+

nU = const + 0 (|Z|-2) as |Z| → ∞ and the formula can be differentiated 

therefore, the kinetic energy ∫ ∫ℜ
+∇

2
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