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SUMMARY. The impulsive ow due to a concentrated ux through a beach with a constant slope is investi-

gated. A general integral solution for the Green function is obtained. Closed form, asymptotic and numerical

results are presented.

1 Introduction

Due to the current growing interest among geophysicists, hydrodynamicists and coastal engineers in landslides

and submarine slumping-induced tsunami (e.g., Tinti et al. 2001), a simpli�ed model is proposed to study the

initial free-surface deection caused by an impulsive underwater mass failure on a sloping beach.

The potential hazards of tectonic bottom motions on near-shore oating and �xed structures have been

discussed by Miloh & Striem (1978) within the framework of non-linear solitary wave theory. Among the early

attempts to solve the linear tsunami generation problem, we also mention Tuck & Hwang (1972) and Hammack

(1973).

It is commmon to assume that the earthquake triggered bottom motion is impulsive, and on the free-surface

the Dirichlet equi-potential type of boundary condition can be applied. Under such an assumtion one can relate

the shape, size and impulsive velocity of the moving underwater slumping to an equivalent source distribution

over the undisturbed slope. For such a purpose thin/at/slender body approximations can be invoked combined

with the Harbitz (1992) model.

In this respect the so-called impulsive Green function directly determines the free-surface deection in terms

of the bottom forcing and beach slope. To determine this Green function it is reasonable to use the small-time

expansion (Tyvand & Storhaug 2000). For the case of a sloping beach with a constant slope, one can go a step

further and derive an exact expression for the impulsive Green function by employing the Kontorovich-Lebedev

integral transform (Miloh et al, 2002). Once such a problem is solved, the landslide-induced non-linear problem

can be then represented as an asymptotic sequence of linearized problems using time as a small parameter. The

special properties of the impulsive Green functions are presented in the sequel.

2 Boundary-value problem

We consider the free-surface ow generated by a point on an impermeable rigid boundary. The uid is inviscid,

incompressible and its motion is irrotational. A Cartesian coordinate system Oxyz is introduced, with the Oxy

plane taken in the undisturbed free surface, whereas the z axis points vertically upwards.

z

x

y

r0

O

α
r(x,z)θ

Bottom source
Inclined bottom

Free surface

Figure 1: System of coordinates and general notations.

The impulsive Green function G(x; y; z;x0; y0;z0) is a harmonic function which is de�ned by the boundary

conditions

G(x; y; 0;x0; y0; z0) = 0; (1)
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and a proper decay at in�nity. Here n is the normal to the rigid boundary at the location of the source and

directed into the uid. This Green function can be represented as a sum of singular and regular parts as

G = �1=R + H; where R =
p
(x� x0) + (y � y0)2 + (z � z0)2 and H(x; y; z;x0; y0; z0) is a regular harmonic

function satisfying the boundary conditions (1) and (2). The free surface vertical velocity W and the impulsive

Green are related by:

W (x; y;x0; y0; z0) =
@
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G(x; y; z;x0; y0; z0)
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: (3)

3 Green function

For some particular geometries the Green function can be constructed by using certain images of the basic

singularity in such a way that the required boundary condition on the free surface and rigid boundaries are

satis�ed. For instance, for a beach with slope angle � = �=2l, (l{integer) the free surface velocity is represented

as

W (x; y; r0 cos�; 0;�r0 sin�) =
2l�1X
n=0

(�1)nr0 sin(2n+ 1)�

[x2 + r20 + y2 � 2xr0 cos(2n+ 1)�]
3=2

: (4)

Consider a uniform beach with an arbitrary constant slope �: By introducing cylindrical coordinates x =

r cos �; z = �r sin �; and using the condition of zero normal velocity at the slope allows us to construct the

general solution in the form of the Kontorovich-Lebedev integral (Lebedev et al, 1965):

H(r; y; �; r0; 0; �) =
2
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where K
�
denotes the modi�ed Bessel function of the second kind, and A(k; � ) can to be determined from the

equipotential boundary condition as:

A(k; � ) =
2

�
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(kr0); (6)

Finally, we end up with the following expression for the surface velocity Green function W :

W = �
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where cosh � = (x2 + y2 + r20)=2xr0:

4 Closed form expressions

Here the inner integral can be calculated explicitly by choosing the contour of integration in the upper complex

half-plane  = � + i�1 as it is shown in Fig. 2a. To calculate the residues we note that in the complex

plane  the integrand has single poles at the roots of the equations sinh�� = 0; �
k
= ik; k = (1; 2 � � �);

cosh�� = 0; �
n
= 2n+1

2�
�i; (n = 0; 1; � � �). Calculating the residues leads to series which can be calculated in

a closed form. Substituting into (7) and performing one analytic integration yields the following expression for

the impulsive free-surface velocity Green function for a uniform sloping beach:

W =
�

2x
p
2xr0�2

Z
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�

sinh(�s=2�)

cosh2(�s=2�)

ds
p
cosh s � cosh �

: (8)

This result is continuous with respect to � and is valid for any 0 < � � �.
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Figure 2: Contours of integration.

For some particular cases, i.e., � = �; �=2 and �=4, the integral (8) can be calculated straightforwardly. To

calculate it for � = �=2l (l-integer) we perform the integration in the complex plane s + is1 along the contour

C shown in Fig. 2b. The integrand has second-order poles on the imaginary axis at points which are de�ned

by the roots of the equation cosh �s

2�
= 0; s

m
= 2m+1

2l
�i; (m = 0; 1; � � �): Since the imaginary poles are located

within the range Im s
m
� 2�, it follows that the number of poles inside the contour is �nite and less than

2l � 1: On the imaginary axis (excluding the poles) and on the intervals [0; �] and [2�i; �+ 2�i] the integral is

imaginary. On the lower cut (�+ i0;1+ i0) and the upper cut [1+ 2�(i� 0)]; �+ 2�(i� 0) the integrals are

equal. Thus, calculating the residues leads to series (4) obtained by the method of images.

5 Asymptotics

For �=� � 1 it follows that exp(���

2�
) � 1. In such a case the expression for the free surface Green function

(8) can be calculated in a closed form:

W =
�

x
p
xr0�2

Q
�
(cosh �); (9)

where � = �=2� � 1=2, and Q
�
is the Legendre function of the second kind. This expression can be used to

calculate the free-surface velocity Green function for any angles � � �. Invoking the asymptotic expressions

of Q
�
(cosh �) for small � and large �, it is illustrated that for small angles � the free-surface velocity Green

function exhibits a boundary layer behavior with an exponential decay W � ��3=2 exp(���=2�). Near the

shore line (x � 1) and for any � < �=2, the free-surface velocity W decays to zero as (x=r0)
�=2��1 ; for

� = �=2, W is �nite, and for �=2 < � � � it is singular.
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Figure 3: Free-surface velocity � = Wr20=Q0 for a source of strength Q0 located at � = x=r0 = 0:88, � = y=r0 = 0:

Solid line: numerical integration of the integral representation (8) which is valid for any �. Symbols: a){�nite

sum (4) which is valid for � = �=2n, n� integer; b){asymptotic expression.
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Figure 4: Free-surface velocity � =Wr20=Q0 for a source of strength Q0 as a function of � = x=r0 and � = y=r0:

(� = �=10 = 18o.)

6 Numerical results

Fig. 3a is a comparison between the computed results of the surface velocity by invoking (8) and (4) which

appears to be in a good agreement. In Fig. 3b the same data are compared against the asymptotic solution (9)

where it is shown that for small sloping angles the asymptotic expression is quite accurate. In Fig. 4, a 3D plot

of the free-surface velocity is shown. It is seen that the free surface velocity decays exponentially with respect

to small � and small x. Its maximum appears approximately above the source.
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