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SUMMARY

In the context of the linearised water-wave problem it is known that there are certain structures that support trapped modes.
These modes exist in the presence of the fixed structure and are free oscillations of the fluid that do not radiate energy to
infinity. Here the consequences of the existence of such modes are investigated. In particular, numerical and asymptotic
methods are used in the time domain to show how trapped modes can be excited by the forced motion of a structure.

1 INTRODUCTION
Trapped modes are free oscillations with finite energy of
an unbounded fluid for which the fluid motion is essen-
tially confined to the vicinity of a fixed structure; it is im-
portant to note that a trapped mode does not radiate energy
to infinity. For structures in the open sea, such trapped
modes are possible only for particular shapes of structure,
and then they occur only for discrete frequencies of oscil-
lation of the fluid. A number of examples of such trap-
ping structures have now been discovered, but here partic-
ular attention will be paid to a class of two-dimensional
surface-piercing structures first found for a fluid of infinite
depth by McIver [1]. Here the equivalent structures in fi-
nite depth water will be investigated and a typical example
is shown in figure 1 (see §2 for notation).
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Figure 1: Example of a trapping structure.

In the frequency domain the existence of a trapped mode
at a particular frequency implies the non-uniqueness, or
sometimes non-existence, of the solution to a linearised
scattering or radiation problem when the forcing is at the
trapped-mode frequency. If the forcing frequency is away

from the trapped-mode frequency then the existence of a
trapped mode causes no difficulties in obtaining a solution
for the fluid motion at the forcing frequency.

In the time domain, trapped modes may be excited by
the forced motion of a structure that is known to support
such modes. For example, suppose that the structure is ini-
tially at rest and is then displaced in some prescribed way
before being brought back to rest. In the linearised prob-
lem the fluid motion so generated may be thought of as
being made up as individual motions with all frequencies.
The motions at frequencies other than the trapped mode
frequency will die away as a result of wave radiation to
infinity. However, the motion at the trapped frequency is
not able to radiate its energy to infinity and, in the absence
of viscosity, the fluid oscillation will persist with constant
amplitude for all time, even though the structure itself is
brought to rest.

In this work the above and other scenarios are inves-
tigated in the time domain by using asymptotic methods
for large time, and by using a numerical technique. The
asymptotic solution is able to predict the amplitude of the
trapped-mode oscillation generated from a given structural
motion. However, it is unable to describe the initial devel-
opment of the oscillation and, in particular, it is not able to
predict the time taken for the trapped-mode oscillation to
become established. Here a numerical method is used for
this purpose.

2 FORMULATION
Attention is restricted to two-dimensional problems and
Cartesian coordinates (x, z) are chosen with z directed
vertically upwards and with the origin in the mean free
surface. The fluid domain is bounded below by a flat rigid
bed at z = −h but extends to infinity in both the positive



and negative x directions. In the linearised time-domain
problem, the fluid motion resulting from the motion of an
immersed structure may be described by a velocity poten-
tial Φ(x, z, t) that satisfies Laplace’s equation and the bed
condition

∂Φ
∂z

= 0 on z = −h. (1)

For a structure Γ that is forced to heave with a vertical
component of velocity V (t), the boundary condition to be
applied on Γ is

∂Φ
∂n

= V (t)nz (2)

where n is a coordinate measured normal to Γ and nz is the
z component of the unit normal. The free surface elevation
of the fluid η(x, t) is related to Φ through the free-surface
conditions

∂Φ
∂t

= −gη and
∂η

∂t
=

∂Φ
∂z

on z = 0. (3)

The motion will be started from rest subject to the initial
conditions

Φ(x, 0, 0) =
∂Φ
∂t

(x, 0, 0) = 0 (4)

and for any fixed time

∇Φ → 0 as |x| → ∞. (5)

3 SOLUTION FOR LARGE TIME
A formal solution to the above initial-value problem
may be obtained by Laplace transforms. The potential
Φ(x, z, t) is related to its Laplace transform φ̂(x, z, s) by
the inversion formula

Φ(x, z, t) =
1

2πi

∫ γ+i∞

γ−i∞
φ̂(x, z, s) est ds (6)

where s = γ lies to the right of any poles of φ̂(x, z, s). A
simple change of variable gives

Φ(x, z, t) =
1
2π

∫ ∞

−∞
� φ(x, z, ω) e−iωt dω (7)

where φ(x, z, ω) ≡ φ̂(x, z,−iω) and the path of integra-
tion is taken over any poles of φ. It follows from causality
that there can be no poles of φ in Im ω > 0 and any pole
on Im ω = 0 will correspond to the existence of a trapped
mode for the particular structure Γ. It will be assumed
here that there is only one trapped mode possible for each
Γ, that is there are exactly two poles of φ for real values of
ω at ω = ±ω0, say. This assumption is consistent with the
numerical results obtained below.

Suppose that a trapping structure Γ supports a trapped
mode at a frequency ω = ω0. That is, for this fre-
quency, there exists a non-trivial solution of φ0(x, z) of

the frequency-domain problem satisfying φ0 → 0 as
|x| → ∞. For the time-domain problem the forcing ve-
locity in the boundary condition (2) is taken to be of the
general form

V (t) = a cos σt + b sinσt

+ c cos ω0t + d sinω0t + E(t) (8)

where E(t) → 0 as t → ∞. This form includes com-
ponents both at the trapped-mode frequency ω0 and at a
frequency σ 	= ±ω0. After some calculation it is found
that as t → ∞ the free-surface elevation

η(x, t) ∼ Aφ0(x, 0)
[

1
2ω0

(dω0t sinω0t

+ cω0t cos ω0t + c sinω0t) +
1

ω2
0 − σ2

(aω0 sinω0t

− bσ cos ω0t) +
∫ ∞

0

E(τ) cos ω0(t − τ) dτ

]

− 1
g

Re
[
σ(b − ia)φh(x, 0, σ) e−iσt

+ ω0(d − ic)φ1(x, 0) e−iω0t

]
. (9)

Here

A = −

∫ ∞

−∞
φ0(ξ,−h) dξ∫

F

[φ0(ξ, 0)]2 dξ

(10)

where F denotes the free surface, φh(x, z, ω) is the
frequency-domain heave potential satisfying ∂φh/∂n =
nz on Γ, and φ1(x, z) involves an integral of φh over fre-
quency. The asymptotic result (9) will be interpreted and
compared with numerical results in the following section.

4 NUMERICAL COMPUTATIONS
A numerical method has been used to investigate solutions
of the initial value problem described in §2. The method
is based on that described by Maiti and Sen [2] in which
cubic splines are used to describe variations in both the
geometry and the boundary values of the potential Φ and
its normal derivative. Time stepping is carried out using
the fourth order Runge-Kutta method. The computational
domain was truncated at values x = ±L and a “radiation
condition” applied in the form suggested by Clément [3];
this combines rigid pistons at x = ±L with an absorbing
boundary condition in the free-surface section L − G <

|x| < L. For the computations described here the values
L = 15h and G = 5h were used.

The trapping structure shown in figure 1 was used in
the calculations. Following McIver [1], this was gener-
ated from two oscillatory sources placed in the free sur-
face at x/h = ±π/8. For a trapped mode there must



be no waves as x → ±∞ and this is achieved pro-
vided the angular frequency of the oscillation is ω0 =√

(4 tanh 4)g/h ≈ 1.99933
√

g/h. A trapping structure
is obtained by locating stream lines of the flow; in this case
the particular stream lines emanating from the free surface
at x/h = ±3π/16 were used.

In the calculations reported here, the structure is ini-
tially at rest with zero displacement and then given a
displacement S(t) so that in the boundary condition (2)
V (t) = S′(t). In the figures time is scaled by T =

√
h/g.

In the first calculations, shown in figures 2 and 3,
S(t) = αt3 e−t for some constant α (thus a = b = c =
d = 0 in equations 8 and 9); the factor of t3 is included to
ensure there is no discontinuity in either the velocity or the
acceleration as the structure begins to move. For the trap-
ping structures described above, the result of the numeri-
cal calculation for the wave elevation η(0, t) between the
cylinders η(0, t) is compared in figure (2) with the asymp-
totic result (9) which is valid for large time. In the ini-
tial phase there is significant wave radiation away from
the structure but by about time t = 10 the trapped mode
is essentially established in isolation and, on the basis of
linear inviscid theory, will persist for all time.

To illustrate the behaviour for structures for which no
trapped mode exists, η(0, t) is plotted in figure 3 for a
pair of half-immersed circular cylinders whose intersec-
tion with the free surface is the same as the pair of trapping
structures shown in figure 1. The imposed velocity is also
the same as that for the results given in figure 2. In this
case, although a large amplitude fluid motion is set up ini-
tially, the amplitude of the motion then decays with time
(if rather slowly) as all of the energy of the fluid motion
can escape to infinity.

Figures 4–5 are for the trapping structure of figure 1
when subject to a forcing velocity of the form

V (t) =

{
1
2 (1 − cos(πt/tm))αω cos ωt 0 ≤ t < tm,

αω cos ωt t ≥ tm,

(11)
which for t ≥ tm corresponds to a displacement S(t) =
α sinωt. The additional factor in V (t) for 0 ≤ t < tm
ensures that both the velocity and acceleration are contin-
uous at t = 0 and t = tm. For the calculations reported
here the choice tm = 4 was made.

For figure 4 the forcing frequency σ is equal to the
trapped-mode frequency ω0. This is the resonant case and
leading-order term as t → ∞ involves an oscillation with
an amplitude that grows in proportion to the time t. In (9)
the heave potential φh is not known explicitly (although it
could be found numerically) and hence only the leading-
order term is used in the graphical comparison.

For figure 5 the forcing frequency σ = 1
2π 	= ω0. In

agreement with equation (9), for large time the fluid re-
sponse now contains two oscillatory components, one at
the forcing frequency σ and one at the trapped-mode fre-
quency ω0. The σ component of the asymptotic solution
is just the usual frequency-domain solution. The ampli-
tude of the trapped-mode oscillation depends on the initial
conditions through E(t). Because the heave potential φh

is not known explicitly the leading-order asymptotic solu-
tion is not computed in this case.

5 CONCLUSIONS
The forced oscillations of a structure that supports a
trapped mode have been examined in the time domain us-
ing asymptotic and numerical methods. Almost any forc-
ing, whether sustained or transitory, will excite the trapped
mode and in the absence of friction it persists for all time.

Oscillatory forcing at the trapped-mode frequency pro-
duces fluid oscillations with growing amplitude. Oscilla-
tory forcing at a frequency that differs from the trapped-
mode frequency gives fluid oscillations with components
at both frequencies. This has consequences for the
frequency-domain problem in which it is usually assumed
that any transients arising from the initial conditions have
died away to leave only oscillations at the forcing fre-
quency. For structures that support trapped modes then al-
most any initial condition will also lead to persistent fluid
oscillations at the trapped-mode frequency.

The computations reported above are restricted to two-
dimensional surface-piercing structures. Trapped modes
are also known to exist in three dimensions and for sub-
merged structures and investigation of these cases will be
made in the future.

The fluid response (both for trapping and non-trapping
structures) can exceed the displacement of the structure by
a considerable amount. Numerical methods can be used to
see how this effect is restricted by nonlinearity.
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Figure 2: Free surface elevation η(0, t) resulting from a displacement S(t) = αt3 e−t of a trapping

structure; (——-) numerical calculation, (– – – –) asymptotic solution.
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Figure 3: Free surface elevation η(0, t) resulting from a displacement S(t) = αt3 e−t of two circular cylinders.
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Figure 4: Free surface elevation η(0, t) resulting from the oscillatory displacement of a trapping structure

at the trapped-mode frequency ω0; (——-) numerical calculation, (– – – –) asymptotic solution.
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Figure 5: Free surface elevation η(0, t) resulting from the oscillatory displacement of a trapping structure

at a frequency σ 	= ω0.
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A trapping structure like the ones discussed here would not make a good wave energy 
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