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Introduction

This note is devoted to the evaluation of the second order internal loads on the oating bodies
oscillating about their mean position under the action of an monochromatic incident wave �eld.
The internal loads are de�ned, in the usual manner, as a di�erence between the hydrodynamic
forces and inertial forces at a given section.

As far as the hydrodynamics is concerned, the calculations are usually performed for a linear
case. Due to the assumptions of the linear theory (hydrodynamic model limited by the mean
water level z = 0 and mean wetted surface of the body, simpli�ed free surface condition, ...)
some unnatural results occur, notably the fact that there is no di�erence between the sagging
and hogging moments. This lack of the linear theory can be supressed only by introducing
the di�erent kinds of nonlinearities in the model. In principle, any kind of nonlinear aspects
will produce the di�erence between the sagging and hogging moments, so that some authors
introduce just the hydrostatic nonlinearities associated with the integration of the hydrostatic
pressure under the exact linear wetted surface of the body (the most easy term to calculate).
This, of course, is not correct way to treat the problem because the nonlinearities introduced
by other e�ects (nonlinearities of the free surface, dynamic pressure under the wave pro�le,
quadratic term in Bernoulli equation, ...) can inuence the results and sometimes even cancel
the e�ects of the hydrostatic nonlinearities. Thus, the coherent way to treat the problem,
should be the evaluation of all nonlinear e�ects at the following order of approximation, linear
theory being considered as a �rst order one. This leads us to the formulation of the second
order hydrodynamic problem which has already been used successfully in the studies of global
behaviour (slow drift oscillations, springing excitation, ...) of some o�shore structures (semi-
submersibles, TLP, ...).

The present work was started with the idea that only when we are able to evaluate the
importance of di�erent e�ects we can be (hopefully) in position to eliminate some of them.
Otherwise it will be di�cult to conclude something serious.

General

The second order theory for global behaviour of the oating body oscillating in waves, is a well
established topic nowadays. Thus we will not enter into much details here and we just recall the
�nal expressions for the motion equations in frequency domain at �rst two orders:�
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where the detailed de�nitions of di�erent terms may be found in [2].
Once the �rst order potential '(1) calculated almost all terms in the above equations may

be evaluated quite straightforwardly, except the part related to the second order di�raction

potential '
(2)
D . The usual way of calculating this part is by using the Haskind relations which

allows the evaluation of the forces without explicit calculation of the potential. Since the modi�ed
form of these relations will be used in this work, we briey recall the basics of this method.
An assisting radiation potential is de�ned by the following boundary value problem (BVP):
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where �0 tanh�0H = 4�.
The use of the Green theorem for  i and ('
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D ) allows the derivation of the following

expression for the part of the forces due to p
(22)
DI :
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where the forcing functions QF and QB are the right hand side terms of the second order
boundary conditions on the body and the freee surface respectively:
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The most di�cult part to calculate is the part associated with the slowly convergent free surface
integral. However, the e�cient methods exist today for evaluation of this integral with high
accuracy and acceptable CPU time.

Internal loads

Till now we were concerned with the evaluation of the global forces on the oating objects
but we stated in the introduction that we are mainly interrested in the internal loads so that
further clari�cations are necessary. By de�nition, the internal loads are the di�erence between
the external forces and inertial forces at considered section k of the body (�g. 1).
We consider �rst and second order cases separately.

First order

In the linear case, the above operation can be performed relatively easily because we solve
directly the BVP for the potential so that the total pressure is explicitely known at each body
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Figure 1: Subdivision of the mean wetted part of the body.

panel. According to the �gure 1 we can write for the �rst order internal loads, at section k,
following expression :

f (1)k = F (1)k + !2[ M ]kf�(1)g (7)

where F k means the external pressure force obtained by integrating pressure over the "cutted"
part (from the section k to the end of the body) only and [ M ]k is the corresponding inertia
matrix.

Second order

The second order problem is more complicated because we don't know the distribution of the
second order potential over the body surface, since we used Haskind relations for the calculation

of F
(22)
i . However, the Haskind relations can be used again, in the modi�ed form, for the

calculation of this part of the forces at each section. In fact, in order to calculate the internal
loads due to the second order potential, we need to calculate the following quantity :
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where the surface Sk is the mean wetted surface contained between the section k and the end
of the body.
As for the global forces, we introduce the assisting radiation potential  ki associated with the
surface Sk. The BVP for this potential is the same as that for  i (3) except for the condition
on the body which is now :

@ ki
@n

=

�
Ni R 2 Sk
0 R 6= Sk

(9)

We apply now the Haskind theorem to the potential  ki and the second order di�raction potential

'
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D and we obtain the following expression for F
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Due to the same form of the BVP's, the potential  ki will have the same characteristics as  i,
so that the same method can be used for the evaluation of the troublesome free surface integral.
The remaining part of the second order force F (2)k is easily calculated by integration of known
quantities over Sk, so that we can now write the �nal expression for the second order internal
loads at section k:
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The last things we should note is that the internal loads, as calculated above, are expressed with
respect to the center of gravity and care should be taken when transfering them to the reference
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point on the section k. The correct way to do is:

fkP = fk +

(
0
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)
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where RP is the position vector of the reference point and, of course, the vector product involves
only the force component of fk. The above (12) is true both for the �rst and second order.

Numerical results and discussions

On the �gure 2 we present some preliminary results for the container ship in oblique wave
conditions. The comparison between the numerical calculations and the di�erent experimental
results is presented. More results will be presented at the Workshop.
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Figure 2: First and second order horizontal shear force Fy at midship section of an container

vessel.

References

[1] Chen X.B. 1988. : Etude des reponses du second-ordre d'une structure soumise a une houle

aleatoire, These, Universite de Nantes, France.

[2] Malenica �S., 1999. : "Second order internal loads in monochromatic waves.", BV Tech-
nical note NT2665/DTA/SM.

[3] Molin B. & Marion A. 1985. : "Etude au deuxieme ordre du comportement des corps
ottants en houle reguliere", IFP report 33 031.

4



 

30-115-Newman.doc 

 
Discussion Sheet 

 
 
Abstract Title : 
 

Second order internal loads on floating bodies 

(Or) Proceedings Paper No. : 30 Page : 115 
First Author : 
 Malenica and Mravak 
Discusser : 
 J. Nick Newman 
Questions / Comments :  
 
How important is the nonlinear component of hogging and sagging in practical 
problems?  It seems that naval architects may overemphasize this relatively small 
effect. 
 
The indirect (Haskind) method is awkward to apply here since the auxiliary potential 
must be evaluated separately for each structural load point.  We have found that the 
computational cost of the integrated force and moment using the direct solution for 
the second-order potential is practically the same as using the Haskind method, as 
explained in the following reference:   
 
   "The computation of second-order wave loads," by C.-H. Lee, J.N. Newman,  
   M.-H. Kim and D.K.P. Yue, 1991 OMAE Conference, Volume 1-A, pp 113-123. 
 
 
Author’s Reply : 
(If Available) 

 

 
The difference between sagging and hogging moments may sometimes be very large, 
(up to 30 percent for some ships), and correct evaluation of sagging and hogging 
moments seems to be quite an important issue in shipbuilding. ( e.g. see. 14th ISSC 
Report, Ch. Extreme hull girder loading). After short bibliogaphial research we 
realized that these non-linearities are usually taken into account using very rough 
approximations, so that we decided to compare more consistent theories like a second 
order one. That was the main purpose of this paper. The second order loads are 
certainly not the only non-linear part contributing to the global loads but, what we 
want to show here is that, all non-linearities should be taken into account properly. If 
this is true at second order it should probably be true for higher order effects too. 
 
Thanks for the second comment. 
When we started to work on this problem, we had in hands the original BV-
HYDROSTAR code where the Haskind relations were already implemented, so that it 
was much easier for us to continue to use this method. At that time, we didn't really 
look into the details of the CPU issues. However after your comments we investigated 
this point in more detail and we realized that you should be right, and CPU time 
should be equivalent for the two methods. 
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This is really a comment on the comment from J.N. Newman. I agree that naval 
architects appear to have over-emphasised nonlinear hogging and sagging - I believe 
the reason may be that they base their calculations on the nonlinear surface profile of 
an undisturbed wave, apparently in ignorance of the fact that there is no 
corresponding 2nd order pressure (in deep water). See for example Ch.6 in Rawson & 
Tupper's "Basic Ship Theory" (vol.1, 4th Ed. 1994). 
But there are other internal loads on ships where the 2nd order contribution is 
important - the longitudinal force near the bow, for example. 
 
 
Author’s Reply : 
(If Available) 

 

 
Part of the answer is in the answer to Prof. Newman question. As we already said, our 
understanding is that the methods commonly used in the calculations of the sagging-
hogging differences are very simplified and not consistent. As you mention, some of 
them just use the incident wave profile and account for some hydrostatic effects, 
which is not correct, even if the non-linear theories are used for incident wave 
definitions. There are many other nonlinear effects (second or higher order) missing 
in these models, and these non-linear effects may affect the forces and moments in 
any direction. 
 
 
 
Questions from the floor included; Odd Faltinsen, Masashi Kashiwagi & Paul 
Sclavounos. 
 


