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SUMMARY

In [1] it was noted that the solution to the scattering of a plane wave by a finite gap in an infinite, thin breakwater for
arbitrary incident wave angle could be written in terms of the solution to the problem in which the incident wave is
parallel to the breakwater. Such a relationship is an example of an embedding formula. Recently it has been shown
[2] that embedding formulas can be derived for the case of N gaps in an infinite breakwater; in this case the result for
an arbitrary angle of incidence is determined from the solution to 2N separate problems (the reason this reduces to 1
in the case of a single gap is due to symmetry).

Solutions to these breakwater-gap problems are related to problems in which the gaps and breakwaters are in-
terchanged. (This is an example of Babinet’s principle, see [3].) Thus embedding formulas are easily derived for a
finite number of collinear breakwaters. Here we show that similar formulas can be derived when the breakwaters are
parallel, but not necessarily collinear; a situation which does not correspond to any breakwater-gap problem.

FORMULATION

We consider an array of N breakwaters, each in the form of a thin vertical barrier extending throughout the water
depth. The breakwaters are all parallel so that their intersection with the undisturbed free surface, denoted by L, is the
union of a finite collection of parallel strips in R

2:

L =
N⋃

n=1

Ln, Ln = {x : an < x < bn, y = ηn},

where x = (x, y). A plane wave making an angle β with the x-axis is of the form Re{fβ(x) cosh k(z+h) exp(−iωt)},
where h is the water depth, k tanh kh = ω2/g, and

fβ(x) = e−ik(x cos β+y sin β).

The total scattered field will be characterized by fβ + φβ , where

(∇2 + k2)φβ = 0 x ∈ R
2\L, (1)

∂φβ

∂y
= ik sinβ fβ x ∈ L. (2)

The potential φβ also satisfies an outgoing radiation condition as r =
√

x2 + y2 → ∞, and appropriate conditions at
the edges of the breakwaters.

We will also consider N + 1 further (non-physical) problems where instead of the body boundary condition (2),
we have

ψβ = −fβ x ∈ L

and
ψ

(n)
β = −f

(n)
β x ∈ L, n = 1, . . . , N,

where

f
(n)
β (x) =

{
fβ(x) x ∈ Ln,

0 x ∈ L\Ln.

Note that ψβ =
∑N

n=1 ψ
(n)
β .

The solutions to these problems are related. Consider the function

φβ =
i

k sin β

(
∂ψβ

∂y
+

N∑
n=1

[
A

(n)
−,β

∂ψ
(n)
0

∂y
+ A

(n)
+,β

∂ψ
(n)
π

∂y

])
β 	= 0, π. (3)



By construction φβ satisfies (1), (2) and the radiation condition. The constants A
(n)
±,β are to be chosen so that φβ

is bounded at (an, ηn), (bn, ηn), n = 1, . . . N . The number of unknown constants is the same as the number of
breakwater edges and this provides the reason why the embedding formulas given below require the solution of 2N
separate problems.

All the above problems can easily be formulated as integral equations. If we define

x′ = (ξ, η), R = |x − x′|,

then the breakwater scattering problem can be written as an integral equation for the unknown jump in the potential
across each barrier. For numerical computations one would probably formulate the problem as a hypersingular integral
equation, but for our purposes we use the fact that all the barriers are parallel to the x-axis to write the integral equation
in the form (

∂2

∂x2
+ k2

) ∫
L

pβ(x′)H(1)
0 (kR) dξ = 2k sinβ fβ(x), x ∈ L, (4)

where
pβ(x, ηn) ≡ 1

2 (φβ(x, η+
n ) − φβ(x, η−

n )).

Note that pβ(an, ηn) = pβ(bn, ηn) = 0. Once pβ has been determined, the solution is given everywhere in the fluid
by

φβ(x) = − i
2

∂

∂y

∫
L

pβ(x′)H(1)
0 (kR) dξ. (5)

For ψβ and ψ
(n)
β we have ∫

L

vβ(x′)H(1)
0 (kR) dξ = −2ifβ(x), x ∈ L, (6)

where vβ(x, ηn) ≡ 1
2 (∂ψβ/∂y|y=η+

n
− ∂ψβ/∂y|y=η−

n
), and

∫
L

v
(n)
β (x′)H(1)

0 (kR) dξ = −2if (n)
β (x), x ∈ L, (7)

where v
(n)
β (x, ηn) ≡ 1

2 (∂ψ
(n)
β /∂y|y=η+

n
− ∂ψ

(n)
β /∂y|y=η−

n
).

As kr → ∞ (x = r cos θ, y = r sin θ), we have

ψβ ∼ ei(kr−3π/4)

(2πkr)1/2
Gθ,β , φβ ∼ ei(kr−3π/4)

(2πkr)1/2
Fθ,β ,

where the diffraction coefficients Gθ,β and Fθ,β are given by

Gθ,β =
∫

L

fθvβ , Fθ,β = ik sin θ

∫
L

fθpβ . (8)

It follows from (4) and (6) that Gθ,β = Gβ,θ and Fθ,β = Fβ,θ.
The particular form of the integral equation (4) is used because it can be written(

∂

∂x
± ik

) (
∂

∂x
∓ ik

) ∫
L

pβ(x′)H(1)
0 (kR) dξ = 2k sinβ fβ(x), x ∈ L,

from which, using integration by parts,(
∂

∂x
± ik

) ∫
L

(
∂pβ

∂ξ
(x′) ∓ ikpβ(x′)

)
H

(1)
0 (kR) dξ = 2k sinβ fβ(x), x ∈ L.

Now we solve this pair of first-order ODEs (each defined on N intervals):

∫
L

(
∂pβ

∂ξ
(x′) ∓ ikpβ(x′)

)
H

(1)
0 (kR) dξ =

2i sinβ

cos β ∓ 1

(
fβ(x) +

N∑
n=1

c
(n)
∓,βf

(n)
∓ (x)

)
, x ∈ L, (9)

where, for convenience, we use subscripts + and − for π and 0, respectively, and c
(n)
∓,β are 2N constants of integration.



It follows from (6) and (7) that

∂pβ

∂x
∓ ikpβ =

− sinβ

cos β ∓ 1

(
vβ +

N∑
n=1

c
(n)
∓,βv

(n)
∓

)
, x ∈ L, (10)

and hence (multiply by f
(m)
∓ (x) and integrate over L)

G
(m)
∓,β +

N∑
n=1

c
(n)
∓,βG

(m,n)
∓,∓ = 0, m = 1, . . . , N, (11)

where

G
(m,n)
θ,β =

∫
L

f
(m)
θ v

(n)
β dξ = G

(n,m)
β,θ , (12)

and

G
(m)
θ,β =

∫
L

f
(m)
θ vβ dξ =

∫
L

fβv
(m)
θ dξ =

N∑
n=1

G
(n,m)
β,θ =

N∑
n=1

G
(m,n)
θ,β .

Equation (11) represents two N × N systems of equations for the constants c
(n)
∓,β . Note that knowledge of v

(n)
± is

sufficient to be able to compute these constants.
The constants A

(n)
±,β defined in (3) and c

(n)
∓,β defined in (9) can be shown to be related. Using (3), (6) and (7) we

have ∫
L

pβ(x′)H(1)
0 (kR) dξ =

2
k sinβ

(
fβ(x) +

N∑
n=1

[
A

(n)
−,βf

(n)
0 (x) + A

(n)
+,βf (n)

π (x)
])

, (13)

for x ∈ L. If we differentiate with respect to x, use integration by parts, and then use (10) we can show that

A
(n)
±,β = 1

2 (1 ∓ cos β)c(n)
±,β . (14)

We also get (multiply (13) by vθ(x) and integrate over L)

Fθ,β = − sin θ

sinβ

(
Gβ,θ +

N∑
n=1

[
A

(n)
−,βG

(n)
0,θ + A

(n)
+,βG

(n)
π,θ

])
, β 	= 0, π. (15)

If we eliminate vβ from (10) we obtain

∂pβ

∂x
+ ik cos β pβ = 1

2 sinβ

N∑
n=1

(
c
(n)
−,βv

(n)
0 − c

(n)
+,βv(n)

π

)
, x ∈ L, (16)

and this can be solved for pβ . For x ∈ Lm we thus have

pβ(x, ηm) = 1
2fβ(x, ηm) sinβ

∫ x

am

N∑
n=1

fπ−β(ξ, ηn)
(
c
(n)
−,βv

(n)
0 (ξ, ηn) − c

(n)
+,βv(n)

π (ξ, ηn)
)

dξ, (17)

which expresses pβ in terms of v
(n)
0 and v

(n)
π . The solution to the breakwater scattering problem for an arbitrary angle

of incidence is thus determined, through (5), in terms of the solution to 2N integral equations of the form (7).
The relationships between the diffraction coefficients take particularly simple forms if we define

Fθ,β = (cos θ + cos β)Fθ,β , Gθ,β = (cos θ + cos β)Gθ,β , etc.

From (8) and (17), we can derive

Fθ,β = 1
2 sin θ sinβ

N∑
n=1

(
c
(n)
−,βG

(n)
0,θ − c

(n)
+,βG

(n)
π,θ

)

and from (15) we then get

Gθ,β = −
N∑

n=1

(
A

(n)
−,βG

(n)
0,θ + A

(n)
+,βG

(n)
π,θ

)
. (18)



Alternatively, using (11),

Fθ,β = 1
2 sin θ sinβ

N∑
n=1

N∑
m=1

(
c
(n)
+,βc

(m)
+,θ G(n,m)

π,π − c
(n)
−,βc

(m)
−,θG

(n,m)
0,0

)

and

Gθ,β =
N∑

n=1

N∑
m=1

(
A

(n)
−,βA

(m)
−,θG

(n,m)
0,0 + A

(n)
+,βA

(m)
+,θG(n,m)

π,π

)
,

from which the symmetry relations Fβ,θ = Fθ,β and Gβ,θ = Gθ,β are obvious. In fact, equation (18) follows from
(15) if we impose the symmetry of F .

CONCLUSION

We have shown that the scattering problem for a plane wave incident from an arbitrary angle on an arbitrary con-
figuration of N parallel breakwaters extending throughout the water depth can be related to 2N separate scattering
problems for the same geometry, but with different boundary conditions. For a given geometrical configuration and
frequency, we must solve 2N integral equations (each with the same logarithmically singular kernel) and invert two
N×N systems of equations in order to determine the solution for any incident wave angle. This can lead to significant
computational savings if solutions are required over a range of angles.

Embedding formulas can also be derived for the case of N gaps in a breakwater which has finite thickness, see [4].
In this situation we require the solution to 4N problems, corresponding to the fact that there are 4N corners. Although
Babinet’s principle does not apply here, it appears that it may be possible to derive embedding formulas for an array
of rectangular columns, and work is currently underway to establish whether this is indeed the case and, if it is, what
form such formulas would take.
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