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1. Introduction 
 
Understanding of the dynamics of three-dimensional objects freely falling through water is of scientific interest and 
practical importance in naval architecture and marine engineering. The body motion is affected by environmental 
conditions (e.g. ambient flow and bathymetry), body geometry (e.g. body shape and mass distribution), potential 
flow effect (e.g. added inertia), and real fluid effect (e.g. flow separation).  Accurate prediction of the body motion 
including all such effects is an extremely challenging task.  

In this work, we focus on the study of characteristic motions of three-dimensional bodies freely falling in water. A 
direct numerical scheme is developed for the time-domain computation of six degree-of-freedom motions of general 
three-dimensional bodies dropping in water including both potential-flow and real fluid effects. The method is 
applied to cylindrical bodies initially released below the free surface in calm water. To adequately account for the 
viscous effect, we conduct laboratory experiments to measure the drag coefficients of the bodies with various body 
aspect ratio, end shapes and orientations to incoming flow. Depending on the initial body orientation, body aspect 
ratio, and mass distribution, we identify key characteristic patterns of the body motion, which compare excellently 
with observations in the tank-drop tests ([4,5]). The present study has a significant implication to the deployment of 
underwater mines and maneuvering of underwater vehicles.  
 
2. The Equations of Motion 
  
To describe the motion of a body, we define a space-fixed inertia 
(global) coordinate system (o-xyz) and a body-fixed (local) 
coordinate system (o’-x’y’z’), as shown in Figure 1. The equations of 
motion of the body can be written in the general form ([1]): 
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where { 0v
r

} and { 'ω
r

} are the vectors of the translational velocity of the body frame and the angular velocity of the 
body in the body frame, { v

r
} and { ω

r
} the vectors of the translational and rotational velocities of a point (x, y, z) in 

the global frame, m the body mass, [ ]m  and [ ]'I  the matrices of mass and moment of inertia in the body frame, ][L  

the  transformation matrix from global frame to local frame, and }{F
r

 and }{M
r

 the vectors of the external force and 

Figure 1. Coordinate System. 



moment on the body including the gravity, buoyancy, viscous-induced drag and lift. In addition, [ ]Am  is the added 
inertia matrix written as  
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3. Hydrodynamic Force and Moment on a Falling Body 
 
The force and moment on a body falling through water contain three components respectively due to gravity, 
hydrostatic buoyancy, and flow-induced hydrodynamic pressure. In equations (1)~(4), the hydrodynamic component 
due to the potential-flow effect is taken into account in the added inertia matrices while the viscous-induced drag and 
moment are treated as external force }{F

r
 and moment }{M

r
.  The viscous force on the body in the body frame is 

given by  
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where L is the body length, S  the frontal projection area, )'(xD  section diameter, and ),,( ''' zyx vvv  the flow 

velocities. Here, 2/, LDC ±  and )'(, xC YZD  are the viscous drag coefficients of the body in the longitudinal and 
transverse directions.  The moment can be computed by multiplying the moment arm to equation (5). 
 
The drag coefficients depend on flow direction and speed, body shape, and aspect ratio. Only limited data for general 
bodies is available in the existing studies ([2,3]). In this study, we conduct a series of model tests to measure the drag 
coefficients. Four models with two different aspect ratios (L/D=3,6) and two frontal shapes (blunt and spherical) are 
considered in the experiment. For each model, measurements of drag/lift and moment on the body are taken with 
various incoming flow speeds and model orientations. Figure 2 shows two sample test models installed in water 
tunnel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    (a) L=3.5-in, D=10.5-in, blunt ends                           (b) L=2.0-in, D=12.0-in, spherical front end  
                                                  Figure 2. Test models installed in water tunnel.  
 
 
4. Solution Scheme and Results 
 
Though a closed-form analytic solution can be derived for a few special cases, equation (1) needs to be solved 
numerically under general conditions. In this study, the 4-th order Runge-Kutta scheme is applied for integration of 
equation (1) with time. At any instant, the added inertia matrix (4) is computed using a panel method.   

When the centers of mass, buoyancy, and added inertia of a body coincide, the motion of the body dropping in calm 
water shows a simple trajectory.  In this case, an analytic solution can be obtained with the instantaneous body 
velocity given by  



time (sec)

1-
(d

v z
/d

t)/
g

-1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
Analytic solution
Measurement

Release

Touch-down
on sea floor

                                           
{ }
{ }






≥=+
<=+

=
T.Z.zVT

T.Z.zVT
z

V)(tvctABV
V)(tvctABV

tv
0  if                     )(coth

 0  if                      )(tanh
)(

..

..                                    (6) 

where  

            
SC

gmg
V

d
VT ρ

∇ρ−
=

)(2
.. ,  

)(2
,

A

YZD

mm

SC
A

+

ρ
= ,  

Amm

gmg
B

+

∇ρ−
= ,  

)0(

)0(
ln

2

1

=−

=+
=

tvAB

tvAB

AB
c

Z

Z  ,         (7) 

and ∇ is the body volume. Here ..VTV  represents the terminal velocity of the body.  

Figure 3 shows the comparison of the field 
measurement of the vertical acceleration with the 
analytic prediction of (6) for a truncated horizontal 
circular cylinder of diameter 0.168m and length 
1.01m. The field drop test was performed at a coastal 
bay of water depth 12.3m ([5]). It shows that the 
simple analytic solution agrees well with the field 
measurement.  

When the centers of mass, buoyancy, and added 
inertia differ, the motion attitude becomes much 
more complicated. In particular, a slight variation in 
initial body orientation and/or flow environment (e.g. 
current or surface wave) can result in a large 
difference in the body trajectory. Figure 4 shows key 
representative patterns observed in the tank drop 
tests. The tests are conducted at the explosive pond of 
U.S. Naval Research Laboratory ([4]).  The models 
used in the tank tests have the same shapes as in 
Figure 2 but of different sizes and mass centers.  

Many numerical tests have been performed in order to 
cooperate the physical mechanisms with numerical 
modeling. It is found that the motion pattern depends significantly on initial body orientation, body aspect ratio, and 
mass center. Proper treatment of the viscous effects is also of importance to the prediction of body motion. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                  (a)                              (b)                               (c)                                  (d)                                     (e) 
Figure 4. Representative patterns of falling body trajectory observed in tank tests ([4], edited). 

 

Figure 5 shows our numerical predictions of the body trajectories. Figure 5a represents the case where the mass 
center coincides with the body geometry center. For this case, body shows a simple vertical trajectory which can 
simply be predicted by the analytic solution (6). Figure 5b shows a trajectory of vertical drop when a small initial 
disturbance is imposed in the transverse direction. A small disturbance can largely change the direction of body 

Figure 3. Comparison of the field measurement 
of the vertical acceleration of a cylindrical body 
([5]) with the analytic solution. 

 



              (a)                              (b) 
Figure 7. Effect of mass center; mass 
center at 0.05L (a) and 0.2L (b) 
 

motion as observed in the experiment. Figure 5c shows a seesaw-like behavior of the body motion. This is a typical 
pattern when the mass center is slightly deviated from the body geometry center. Figure 5d shows a different falling 
pattern with Figure 5c although they have the same initial drop angle. The distance between mass and volume centers 
in Figure 5d is slightly larger than that in Figure 5c. Figure 5e shows a combination of different patterns in Figures 
5b, 5c, and 5d. The aspect ratio of the model in Figure 5e is half of the models in previous figures. In general, the 
motion attitude becomes more profound when the aspect ratio becomes smaller.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
                    (a)                              (b)                            (c)                                 (d)                                  (e) 
                                          Figure 5. Numerical solutions of different motion patterns. 
 
 
Figure 6 compares the trajectories of the body with different mass 
centers. Figure 6a is a typical motion pattern when the mass center is 
close to the buoyancy center. In this case, the pitch moment due to 
weight and buoyancy does not exceed the moment due to viscous-
induced drag. However, when the mass center is far from the buoyancy 
center, the pitch moment can overcome the viscous-induced resistance 
moment. Then, the body motion can show a tumbling feature, as in 
Figure 6b. Such a tumbling motion is also observed in tank tests for 
models with small aspect ratios.   
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This problem has been extensively studied by the offshore oil industry. Typically, a 
slender body (e.g. a length of drill string) is dropped end-on into the water, and it is 
necessary to ensure that it deviates sufficiently as it drops to avoid hitting something 
valuable on the seabed (e.g. a wellhead). 
There is a complete formulation of all the slender-body potential-flow forces in my 
1995 Proc. Roy. Soc. Paper (A450 pp391-416). In the special case where there are no 
waves, these potential-flow forces give the “rocking” and “tumbling” trajectories 
shown at the end of the author’s paper. Those trajectories are described by exact 
formulae (Art.127 of Lamb’s text book), which serve as a valuable cross-check on 
any computer code – I am surprised that the authors do not cite them. 
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