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Introduction

As is theoretically indicated by Maniar & Newman (1997), waves incident to a long array
of equally-spaced vertical cylinders can be trapped among the cylinders and extreme water-
surface elevations among the cylinders or very large hydrodynamic forces on the cylinders
can be induced. However, actual water-surface elevations or hydordynamic forces caused
by the waves trapped among the cylinders turned out to be much smaller than or even
qualitatively different from the theoretical predictions based on the linear potential theory
(Kagemoto, Muari & Saito (1999)). It has been indicated by Kagemoto et al. (1999), or in
more refined way by Molin (1999), that these apparent contradictions observed between the
linear potential theory and the actual phenomena can be attributed to the tiny additional
damping forces that may be induced by the viscosity.
Supposing that the velocity potential Φ representing the flow field around the cylinders in
waves of circular frequency ω is written as,

Φ(x, y, z, t) = Re
{
φ(x, y, z)e−iωt

}
(1)

Molin (1999) proposed to impose the following boundary condition on the vertical body-
surfaces of the cylinders.

∂φ

∂r
= −iεφ

a
(2)

where the lefthand-side represents the normal flow velocity on the vertical surface of the
corresponding cylinder and ε is a certain real positive value. When ε = 0, the usual
’no-penetration’ body-boundary condition is reproduced. With a finite value of ε, on the
other hand, the above equation physically implies that the corresponding cylinder surface is
slightly porous. The body-boundary condition (2) can be easily implemented in the existing
computer code based on the linear potential theory, while the the additional damping force
that may be induced due to the energy dissipation in the viscous boundary layers along the
cylinder surfaces can be accounted for in an approximate way. With appropriate choice of
ε value, the theoretical predictions of such responses as the water-surface elevations among
the cylinders turned out to agree quite well with the corresponding experimental results
(Kagemoto, Murai, Saito, Molin and Malenica (2002)). This fact could have very important
practical implications for the design of floating structures supported on a large number of
cylindrical columns, which are actually extensively studied in Japan as possible alterna-
tives to conventional land-based airports, in that, other than the water-surface elevations,
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various practically important responses of such column-supported structures may also be
very different from the linear-theory predictions.
Among the possible important responses that may be affected by the additional damp-
ing force, the present work focuses on the drift force that will act on an array of vertical
cylindrical columns, which is a quite important quantity for the design of actual structures.

Drift-force calculation

Prior to the actual computation of the drift force on an array of cylinders, the applicability of
the conventional calculation methods of the drift force to a porous body was examined. For
this purpose, a bottom-mounted vertical cylinder of raidus a in a regular wave train (wave
amplitude ζa, circular frequency ω) progressing in x direction was considered. Here the
rectangular coordinate system (x, y, z) is used, in which the x, y axes lie on the undisturbed
free surface while the z axis stretches vertically upward. The water depth and thus the
column length is assumed to be infinite for the sake of simplicity, although the results shown
later are practically applicable for a cylinder of finite but large draft.
The velocity potential that satisfies the body-boundary condition (2) can be obtained in
exactly the same manner as that shown by McCamy & Fuchs (1954) and the drift force F x

acting on the cylinder in the x direction can be written in an explicit form as follows.

F x/ρgπaζ
2
a =

1
2

∞∑
n=0

Im(αn+1α
∗
n)

{
1− n(n+ 1)

(k0a)2
− ε2

(k0a)2

}
(3)

with

αn ≡ Jn(k0a)−
J ′

n(k0a) + iε
k0aJn(k0a)

H ′
n(k0a) + iε

k0aHn(k0a)
Hn(k0a) (4)

Here Jn,Hn represent the n-th order Bessel function of the first kind and the n-th order
Hankel function of the first kind respectively. k0 denotes the wavenumber of the incident
wave. The prime indicates the derivative with respect to the argument and the asterisk
denotes the complex conjugate.
In case of ε = 0, the above expression is further reduced to the following very simple form.

F x/ρgπaζ
2
a =

4
(πk0a)3

∞∑
n=0

{
1− n(n+ 1)

(k0a)2

}2 1
| H ′

n(k0a) |2| H ′
n+1(k0a) |2 (5)

It is known that drift forces acting in horizontal direction can also be calculated from the
momentum change in the fluid volume surrounding the corresponding body. The detailed
mathematical manipulation can now be found in many textbooks (e.g. Mei (1983)) and
the final formula are shown here.
Supposing that the scattered velocity potential Φs is expressed at large r as,

Φs = −Re
{
igζa
ω

A(θ)
(

2
πk0r

)1/2

ei(k0r−ωt−π/4)ek0z

}
(6)

where (r, θ, z) is the cylindrical coordinate system fixed to the center of the water-surface
cross section of the cylinder and A(θ) represents a certain function of θ, then the drift force
F x can be calculated as follows.

F x/ρgπaζ
2
a = − 1

2(πk0a)

{
1
π

∫ 2π

0
cos θ | A(θ) |2 dθ + 2Re (A(0))

}
(7)
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In the present case, however, since the body-surface is assumed to be slightly porous,
the following additional term δF x is needed, which vanishes if the corresponding body is
watertight.

δF x = −
∫ ∫

SB

ρ
∂φ

∂x

∂φ

∂n
dS (8)

where the overline indicates that the time average is taken and ∂/∂n denotes the derivative
in the normal direction (outward from the flow region) at the body surface SB .
Table 1 compares the drift force F x/ρgπaζ

2
a calculated by the equations (3),(7),(7)+(8). It

can be known that the body-surface-integraion part δF x can take appreciable portion of
the total drift force as ε increases.

Table 1 Comparisons of the drift force calculated by diffrent formula

2ka eq.(3) eq.(7) eq.(7)+eq.(8)
ε = 0.000 1.00 0.9103204E-01 0.9103186E-01 0.9103186E-01

2.00 0.2116524E+00 0.2116520E+00 0.2116520E+00
3.00 0.1911160E+00 0.1911156E+00 0.1911156E+00

ε = 0.003 1.00 0.9105114E-01 0.9402962E-01 0.9105095E-01
2.00 0.2108890E+00 0.2121831E+00 0.2108886E+00
3.00 0.1905345E+00 0.1914794E+00 0.1905341E+00

ε = 0.030 1.00 0.9097961E-01 0.1200670E+00 0.9097935E-01
2.00 0.2040098E+00 0.2168095E+00 0.2040093E+00
3.00 0.1853504E+00 0.1946938E+00 0.1853500E+00

ε = 0.300 1.00 0.6732617E-01 0.2985854E+00 0.6732558E-01
2.00 0.1378781E+00 0.2515847E+00 0.1378775E+00
3.00 0.1379171E+00 0.2208587E+00 0.1379166E+00

Drift force on an array of vertical cylinders

As shown in the previous section, since, if ε �= 0, the horizontal drift force can not be
calculated from the far field only, the drift forces shown in this section were calculated by
the pressure integration over the body surface of the cylinders. The example results are
shown in Fig.1. In the figure, the present calculations on the total horizontal drift force
acting on an array of 16×4 vertical truncated cylinders are compared with the experimental
ones published by Kashiwagi (2000). Although, unlike the dynamic responses such as water-
surface displacements or wave-induced body motions, the drift force on a fixed body may
not be very sensitive to damping forces, its frequency response characteristics shown in the
figure are somewhat smoothed with the inclusion of positive ε and become closer to the
experimental results.
Further investigation will be conducted on the drift force acting on each cylinder and
the implications for the design of a floating structure supported on a large number of
periodically-arrayed columns will be investigated.

References

Kagemoto, H., Murai, M. and Saito, M. 1999 Experimental investigation on wave decay
characteristics along a long array of cylindrical legs, In Proc. 14th Intl. Workshop on Water
Waves and Floating Bodies, 60-63.
Kagemoto, H., Murai, M., Saito, M., Molin, B. and Malenica S̆. 2002 Experimental and

3



theoretical analysis of the wave decay along a long array of vertical cylinders, J. Fluid
Mech., (to appear).
Kashiwagi, M. 2000 Wave drift force and yaw moment on a column-supported type very
large floating structure. In Proc.15th Ocean Engineering Symposium, 239-246 (in Japanese).
Maniar, H.D. & Newman J.N. 1997 Wave diffraction by a long array of cylinders, J. Fluid
Mech. 339, 309-330.
McCamy, R.C. and Fuchs, R.A. 1954 Wave forces on a pile: a diffraction theory. Tech.
Memo. No.69. U.S. Army Board, U.S. Army Corp. of Eng.
Mei, C.C. 1983 The Applied Dynamics of Ocean Surface Waves, Wiley-Interscience.
Molin, B. 1999 Discussions made by B.Molin at the 14th Intl. Workshop on Water Waves
and Floating Bodies, In Discussions report of the 14th Intl. Workshop on Water Waves
and Floating Bodies.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

D
rif

t F
or

ce
x／

0.
5 

ρ 
g 

ζ2  D
 N

B

Ks

First critical frequency

Calc. ε = 0.00
Calc. ε = 0.01
Calc. ε = 0.02

Exp. (Kashiwagi)

Figure 1: Drift force on an array of 16 × 4 vertical truncated cylinders (d/a=4,
s/a=2) (A:incident-wave amplitude, D:cylinder diameter a:cylinder radius, d:cylinder draft,
2s:center-to-center distance, NB :number of cylinders)
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