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SUMMARY

The problem of the diffraction of an unidirectional incident wave group by a bottom-seated cylinder is
considered. The problem is formulated for two first approximations of a small perturbation theory. It is
solved by using the time Fourier transform and variables separation. Solutions for various types of incoming
wave spectrum (Gaussian and Pierson-Moskowitz) presented, and the solution technique is optimized for
wave group type problems.

1 PROBLEM FORMULATION

We consider diffraction of an unidirectional wave in water of uniform depth h by a bottom-seated cylinder
of radius @. The intersection point of the cylinder axis and an undisturbed water surface is the origin of a
rectangular Cartesian coordinate system (%,79,2) and cylindrical coordinates (7,6,2). A unidirectional wave-
group with surface elevation = = A Z; and characteristic amplitude A is generated at & = —oo and moves in the
positive z-direction. We introduce non-dimensional variables in the following way

(#,9,2) =L (z,y,2); E=AZ; t=1/L/jt;

where @ is the incoming wave characteristic frequency. A tilde is used to denote dimensional values. The

problem formulation becomes

AP = 0; 6_<I> =0 ; 6_<I> 0 ;
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and includes one non-dimensional parameter € = A/L. Here the length scale L = @ and ¢ = A/a. We consider
the limit € — 0 and represent the solution as an asymptotic expansion

3=(01 130 1@ 1@ 4...; =2=EV V) 4 (ED 5@ 4. (2)

The problem has a second length scale, a characteristic length of the incoming wave, and the measure of non-
linearity for the incoming wave is the linear steepness e; = A@32/g. Here we assume that e; and € are of the
same order, e = O(e) as € — 0. Applying Fourier transform to separate time explicitly we obtain
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Lower case letters here denote the corresponding Fourier transforms, and subscripts I and D designate the
incoming and diffracted components respectively. The corresponding first and second-order problems are the
same as for a monochromatic incoming wave (e.g. Chau & Eatock Taylor, 1992) save for the form of the non-
homogeneous terms in the second-order problem. The amplitude of the solution for every specific value of w is
specified by the spectrum of the incoming wave.

A general linear unidirectional wave of the first-order solution approaching from z = —oo in the positive
direction can be represented as a linear combination of monochromatic sinusoidal waves

+oo
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where the spectrum S is defined such that at the focus point of the wavegroup (¢t = 0, x = 0) the surface

elevation is Egl) (0,0)+ Egl)*(O, 0) = 1. The non-dimensional wave number k here satisfies the dispersion relation

w? = k(w) tanh(k(w) h). The corresponding first-order potential is
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Introducing a complex amplitude function A(w) = —i+/7/2e'¥“) S(w)/w we can write the Fourier component of
the incoming wave at a frequency w as

51)((0) = AW) cosh(k(w) (z + h)) g k@)

cosh(k(w) h)
The corresponding second-order solution is
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The solution for the incoming as well as for the diffracted potentials includes two terms. These are the
plus-term ¢ corresponding to the sums of various frequencies and the minus-term ¢~ which corresponds to
their differences. For the case of single frequency input these are double frequency and constant second-order
terms respectively.

2 SOLUTION FOR THE DIFFRACTED POTENTIALS

To solve the non-homogeneous second-order problem (3) let us first consider the following eigenvalue problem
in the vertical direction

Zn(2) = A Zin(2) = 0 Zp(=h) = 0; Z3,(0) — w” Zin (0) = 0. (6)

The problem (6) has a countable set of eigenvalues and eigensolutions
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The system of functions Z,, is orthogonal on the interval [—h, 0]. We multiply the second-order problem (3) by
Zm(z) and integrate the result from —h to 0. For the second derivative with respect to z in the Laplacian we

have .
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Figure 1: First-order and second-order plus and minus force amplitude spectrum |f(w)| and force time history
F(t) for various bandwidths of Gaussian incoming wave spectrum, wy = v/2. The dash-dotted line represents
the monochromatic result from Kim & Yue (1989).

where the free-surface boundary condition was used. Now the functions
0
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satisfy the following set of the boundary value problems in the (z,y) plane

0
— - [ 2.2
et ™ or

—h

Atho + k3rbo + rhs P (z,y) = 0; M
Ao, — k2000 + ths @ (2, y) =0;  Or

dz (7

r=1

plus the appropriate radiation condition at infinity. The complete second order solution can be now written in
the form of the Fourier series in the vertical direction
0

5= 3 (Y, b= (/ Zm(z)zdz) .

We shall represent the solution of (7) in the form of the Fourier series in the circumferential direction

b0 = 3 Rum(r)e™,

n=—oo

where each term of the series satisfies the boundary value problem for a non-homogeneous Bessel equation
1 2

with proper boundary condition at infinity. The far field asymptotic behaviour of the individual term of the
Fourier series of the plus component of the right hand side is

1 w
+ .
rhs, — mAn exp(2zk(5)r) as r— oo

while the corresponding minus component is exponentially small.

After substitution in (8) it can be easily found that the non-homogeneous part of the plus-solution (locked
wave) behaves like

A 1 ;
+ _ n 2ik(w/2)r
RL (1) = k2, — 4 k(w/2)? 1372 e
and the minus-term decays exponentially. The homogeneous part (free wave) satisfying the Helmholtz radiation
condition can be represented as
R (1) = CTLT:L et as r— o0

for m = 0, and it decays exponentially for m > 0. To complete the formulation of the problem for the second
order diffracted Fourier components, we use these conditions as an asymptotic boundary condition for problem

(8).
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Figure 2: Snapshots of the first order (left) and complete first plus second order (right) dimensional surface
elevation along the z-axis and around the circumference of the cylinder. Pierson-Moskowitz spectrum, A =
8.15m, h = 50m, a = 25m, Ty = 12sec. The dash-dotted line represents the solution for the incoming wave. Ty
is the period corresponding to the frequency @y.

3 RESULTS

As a first trial of the method we applied it to the case of a Gaussian spectrum for the incoming wave
Sw) = e @A (/T ). (9)

The limit of the spectrum (9) as A — 0 is a monochromatic wave. Calculations with A = 0.2, 0.15, 0.1 and 0.05
for the basic frequency wo = v/2 were performed.

Spectra of the force amplitude and the corresponding force time histories have been obtained. The force
F(t) has been decomposed into first-order and second-order plus and minus terms similarly to potential in (2).
Figure 1 shows the envelopes of the first-order term F(!) and the plus term F*, oscillating at frequencies wo
and 2 wg, and the time history of the slowly varying minus term F'~. As the bandwidth of the original incoming
wave spectrum A is decreased, all response spectra approach certain delta-type spectra with frequencies wq for
the first-order solution, 2wg for the plus-solution and 0 for the minus-solution. The solutions with wider input
spectra decay faster in time, which means that the corresponding wave envelopes are smaller in length and
interact with the cylinder during the shorter time period. The solutions with smaller bandwidth approach the
monochromatic solution of Kim & Yue (1989).

Next, we consider the more practical case of an incoming wave described by the Pierson-Moskowitz spectrum

=3 (2) =(5(5))

Let the physical dimensional parameters of the problem be: amplitude A = 8.15m, depth h = 50 m, cylinder
radius @ = 25m and the characteristic period of the wave Ty = 12sec. Then the corresponding non-dimensional
parameters are h = 2, wg = 0.836 and ¢ = .326. The comparison of the first and the complete second-order
solutions for this parameter set is represented on figure 2 where the snapshots of water surface elevation at three
different times for both cases are shown. Since the parameter ¢ is relatively large for the case considered, the
influence of the non-linearity in the diffracted field is considerable as can be clearly seen on the figure. It leads
to high local surface gradients around the circumference of the cylinder.

In conclusion, the method proposed here works well for the interaction of compact wavegroups with a single
cylinder.
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