Verification of Fourier-Kochin representation of waves

C. Yang*, F. Noblesse**, R. Löhner*

** School of Computational Sciences, George Mason University, USA
* David Taylor Model Basin, NSWC-CD, USA

The purpose of this study is to present a verification of the Fourier-Kochin representation of waves given in [1,2]. This representation expresses the waves generated by a given flow at a boundary surface in terms of single Fourier integrals and spectrum functions that are defined by distributions of elementary waves over the boundary surface. The Fourier-Kochin representation of waves is given in [1,2] for three classes of free-surface flows: (i) diffraction-radiation of time-harmonic waves without forward speed, (ii) steady ship waves, and (iii) time-harmonic wave (diffraction-radiation with forward speed).

The Fourier-Kochin representation of waves is considered here for steady flows associated with the linearized free-surface boundary condition \(w + F^2 \partial u / \partial x = 0 \) where \(F = U / \sqrt{gL} \) is the Froude number, and \((u, v, w) = \tilde{u} = \tilde{U} / U = \nabla \phi \) is the disturbance-flow velocity; here, \(\phi = \Phi / (U L) \) is the velocity potential associated with the velocity \(\tilde{u} \). The Fourier-Kochin representation of waves defines the potential \(\phi^W \) and the velocity \(\tilde{u}^W \) associated with the waves that are generated by a given velocity distribution \(\tilde{u} \) at a boundary surface \(\Sigma \), which may intersect the mean free-surface plane \(z = 0 \) along the boundary curve \(\Gamma \). The boundary surface \(\Sigma \cup \Gamma \) is divided into patches, i.e. \(\Sigma \cup \Gamma = \sum_{p=1}^{N} \Sigma_p \cup \Gamma_p \), associated with reference points \((x_p, y_p, z_p)\), with \(\tilde{x} = \tilde{X} / L \), located near the centroids of the patches.

The wave potential \(\phi^W \) and velocity \(\tilde{u}^W \) at a field point \((\xi, \eta, \zeta)\) of the flow domain outside a boundary surface \(\Sigma \cup \Gamma \) are given by the single Fourier integrals

\[
4\pi \begin{pmatrix} \phi^W \\ u^W \\ w^W \end{pmatrix} = \mathcal{R} \Re \int_{-\infty}^{\infty} \frac{d\beta}{k^d - \nu} \begin{pmatrix} i \alpha^d \\ \beta \\ i k^d \end{pmatrix} \sum_{p=1}^{N} \left[1 + \text{erf} \left(\frac{x_p - \xi}{\sigma F^2 C} \right) \right] S_p^W e^{i(z_p + \zeta)k^d + i[(x_p - \xi)\alpha^d + (y_p - \eta)\beta]}
\]

where \(\mathcal{R} \) stands for the real part. The functions \(\alpha^d(\beta) \) and \(k^d(\beta) \) are defined as

\[
\alpha^d = \sqrt{k^d / F} \quad k^d = \nu + \sqrt{\nu^2 + \beta^2} \quad \text{with} \quad \nu = 1/(2F^2)
\]

Here, \(k^d(\beta) \) stands for the value of the wavenumber \(k \) at the dispersion curves \(\alpha = \pm \alpha^d(\beta) \), with \(-\infty \leq \beta \leq \infty \), associated with the dispersion relation \(F^2 \alpha^2 - k = 0 \). The function \(C \) in the error function \(\text{erf} \) is related to the curvature of the dispersion curves and is given by

\[
C = 1 + 3/(F^2 k^d) - 2 / (4 F^2 k^d - 3)^{3/2}
\]

We have \(C = 2 \) for \(\beta = 0 \), where \(\alpha^d = k^d = 1/F \), \(C = 1 \) as \(\beta \rightarrow \pm \infty \), and \(C = 1 \) at the inflection points defined by \(F^2 k^d = 3/2 \) and \(F^2 \beta = \pm \sqrt{3}/2 \). The positive real constant \(\sigma \) may be chosen as in [2].

The contribution \(S_p^W \) of patch \(p \) to the wave-spectrum function \(S^W(\beta) \) is given by

\[
S_p^W = S_p^\Sigma + F^2 S_p^\Gamma
\]

with

\[
S_p^\Sigma = \int_{\Sigma_p} dA \left[(\tilde{u} \cdot \tilde{n}) + i \frac{\alpha^d}{k^d} (\tilde{u} \times \tilde{n}) \cdot \tilde{v} - \frac{\beta}{k^d} (\tilde{u} \times \tilde{n}) \cdot \tilde{v} \right] e^{k^d(z + z_p) + i[(\alpha^d(x - x_p) + \beta(y - y_p)]}
\]

\[
S_p^\Gamma = \int_{\Gamma_p} d\Gamma \left[(t^2 \tilde{t} + \frac{\alpha^d}{k^d} \tilde{v} \cdot \tilde{t} - (t^2 + \tilde{v}^2) \tilde{u} \cdot \tilde{v} \right] e^{i[(\alpha^d(x - x_p) + \beta(y - y_p)]}
\]

Here, the unit vector \(\tilde{n} = (n_x, n_y, n_z) \) is normal to the boundary surface \(\Sigma \) and points into the flow region outside \(\Sigma \), and the unit vectors \(\tilde{t} = (t_x, t_y, 0) \) and \(\tilde{v} = (-t_y, t_x, 0) \) are tangent and normal to the boundary curve \(\Gamma \) in the mean free-surface plane \(z = 0 \). The normal vector \(\tilde{v} \) points into the flow region outside \(\Gamma \), like the normal vector \(\tilde{n} \), and the tangent vector \(\tilde{t} \) is oriented clockwise (looking down). The spectrum functions \(S^\Sigma(\beta) \) and \(S^\Gamma(\beta) \) are defined by distributions of elementary waves over the boundary surface \(\Sigma \) and the boundary curve \(\Gamma \), respectively, with amplitudes given by the normal components \(\tilde{u} \cdot \tilde{n}, \tilde{u} \cdot \tilde{v} \) and the tangential components \(\tilde{u} \times \tilde{n}, \tilde{u} \cdot \tilde{t} \) of the velocity \(\tilde{u} \) at \(\Sigma \) and \(\Gamma \).
Thus, the Fourier-Kochin wave representation defines the wave potential $\phi^W(\xi)$ and velocity $u^W(\xi)$ at a field point ξ of the flow region outside a boundary surface $\Sigma \cup \Gamma$ in terms of the velocity distribution $\bar{u}(\bar{x})$ at the boundary surface Σ and the boundary curve Γ. This representation of the waves generated by a flow at a boundary surface only involves the boundary velocity $\bar{u}(\bar{x})$; i.e. the Fourier-Kochin wave representation does not involve the potential $\phi(\bar{x})$ at the boundary surface $\Sigma \cup \Gamma$, unlike the classical boundary-integral representation that defines the potential in a potential-flow region in terms of boundary-values of the potential ϕ and its normal derivative $\partial \phi / \partial n = \bar{u} \cdot \bar{n}$. The Fourier-Kochin wave representation is based on several recent new fundamental results obtained within the framework of the Fourier-Kochin theory [3,2]: (i) the boundary-integral representation, called velocity representation, given in [1,2], (ii) the representation of the generic super Green function defined in [4,5,2], and (iii) the transformations of spectrum functions given in [3,1,2]. The flow generated by a given flow at a boundary surface can be expressed as

$$\phi = \phi^W + \phi^L, \quad \bar{u} = u^W + \bar{u}^L,$$

where ϕ^W, u^W is the wave component defined by the Fourier-Kochin wave representation, and ϕ^L, u^L is a local-flow component. The Rankine and Fourier-Kochin nearfield flow representation given in [6] expresses the local component ϕ^L, \bar{u}^L in terms of distributions of elementary Rankine singularities and Fourier-Kochin distributions of elementary waves over the boundary surface Σ and the boundary curve Γ. The local component ϕ^L, \bar{u}^L is not considered here.

For the purpose of verifying the foregoing Fourier-Kochin wave representation, the flow due to a source-sink pair is considered here. Fig.1 shows the disturbance velocity (u,v,w) generated by a point source and a point sink, of strength $q = Q/(UL^2) = 0.001$, located at $(x,y,z) = (\pm 0.5, 0, -0.02)$ over the lower half $z \leq 0$ of the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2$ with $(a,b,c) = (0.55, 0.05, 0.1)$. The velocity distribution (u,v,w) generated by the point source-sink pair is evaluated, for a Froude number $F = 0.316$, using integral representations of the Green function given in [7]. The upper half of Fig.2 depicts the free-surface elevation, computed using integral representations of the Green function, due to the source-sink pair. The lower half of Fig.2 depicts the free-surface elevation obtained using the Fourier-Kochin wave representation and the velocity distribution generated by the source-sink pair at the ellipsoidal boundary surface depicted in Fig.1. The free-surface elevations computed using expressions for the Green function (upper half) and reconstructed using the Fourier-Kochin wave representation (lower half) are not identical in the vicinity of the ellipsoidal boundary surface because the local-flow component u^L is ignored in the Fourier-Kochin wave representation. The wave elevations shown in Fig.3 along the four longitudinal cuts $y = 0, y = 0.06, y = 0.1, y = 0.5$ show that the local component u^L in fact is only significant in the vicinity of the elliptical boundary curve.

The results depicted in Figs 1-3 provide a verification of the Fourier-Kochin representation of waves. Furthermore, Fig.3 shows that the wave component is dominant even in the nearfield. Illustrative practical applications of the Fourier-Kochin representation of waves are given in [8,9]. Specifically, the Fourier-Kochin representation of steady ship waves is coupled with nearfield calculations based on the Euler equations in [8] and is applied to the design of a wave cancellation multihull ship in [9].

References
[9] C. Yang, F. Noblesse, R. Löhrer, D. Hendrix (2000b) Practical CFD applications to design of a wave cancellation multihull ship, 23rd Symp. on Naval Hydrodyn., Val de Reuil, France
Fig. 1. Velocity distribution generated by source-sink pair at boundary surface

Fig. 2. Wave patterns due to source-sink pair
top: wave pattern computed using Green function
bottom: wave pattern reconstructed using Fourier-Kochin wave representation
Fig. 3. Wave elevations along four cuts at \(y = 0, 0.06, 0.1, 0.5 \) for \(F = 0.316 \)