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The Havelock/Dawson method of solving linearized free-surface problems was dis-
cussed by the author in 1999 [1]. A combination of Rankine singularities distributed on
the surface of the ship hull and Havelock singularity distributions placed over the undis-
turbed free surface can be used to impose either the classic Kelvin linearized free-surface
condition or Dawson’s linearized boundary condition. With this approach we have been
able to generate numerical solutions that combine the near-field accuracy of Rankine codes
with the far-field accuracy of Havelock codes. We have found this method to be both ro-
bust and computationally efficient. An extension of the basic Havelock/Dawson approach
to include fully nonlinear free-surface boundary conditions is discussed here.

The Kelvin and the Dawson linearized free-surface boundary conditions are special
cases of the general expansion of the nonlinear free-surface conditions about an arbitrary
basis function. Taking the velocity potential ® as the sum of a known basis function ¢, and
an unknown perturbation potential ¢, , we can write the free-surface boundary condition
in the following form:
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Assuming that the perturbation potential is “small”, V¢, < V¢, , we hope to be able
to neglect the higher order terms in V¢,. Of course, the nonlinear boundary condition
should be satisfied on the exact position of free surface, z = (. However, consistent with our
intent to retain only the first order terms in the perturbation potential, we can expand this
boundary condition in a Taylor series about the position of the free surface corresponding
to the basis flow, 2z = (,. Such an expansion leads to first order terms in A( = ¢, — (,,
that should properly be retained under the assumption that they can be of the same order
as the first order terms in ¢,; see Nakos and Sclavounos, 1991 [2], for details. However,
Raven, 1996 [3], pointed out that the A( terms can be quite irregular and suggested that
the convergence of an iterative scheme may actually be improved by leaving these terms
out. We decided to follow Raven’s approach in order to take advantage of the numerical
simplification, and we apply the boundary condition directly on z = ( .

In our iterative scheme, we use the Havelock/Dawson solution as the initial basis flow
(or zeroth iteration). We then attempt to solve for the perturbation potential by applying
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the linearized expansion about the basis flow using
%V¢i+1 V(V¢z V(bz) + V(bz : V<V¢z 'V¢¢+1) + g %(buﬂ ~
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The new free-surface elevation (;y; is calculated by applying the Bernoulli equation on
z = (. It was not obvious that such an iterative scheme would necessarily be convergent.
However, by first extending our existing Havelock/Dawson code to include the perturbation
expansion about an arbitrary basis flow, and then nesting the code within an iterative loop,
we are able to investigate the convergence numerically.

With the basic Havelock/Dawson method, Rankine source panels are distributed over
the surface of the hull S(z,z), and Havelock source panels are distributed over a local
region of the undisturbed free surface Z(x,y) = 0. It has been found that the Havelock
singularity density necessary to satisfy the free-surface boundary condition tends to zero
rapidly as the distance from the hull increases, and therefore the number of free-surface
panels required can be quite small relative to other methods. For the nonlinear problem,
we wish to distribute the free-surface panels on (;(z,y) # 0, and the accuracy achieved by
panelizing a small near-field region of the free surface needs to be demonstrated. Further-
more, positioning Havelock singularities at locations above the mean free surface presents
mathematical difficulties that will be addressed in the following section. For the moment,
imagine that we distribute N Rankine panels over the surface of the hull S(z, z), and M
Havelock panels over the near-field region of the free surface (;(x,y), to solve for ¢, ,.
The determination of the source strengths ¢ and 0% necessary to satisfy the boundary
conditions will involve solving a matrix equation of the form

A A lee] = [Be] s e
A, contains the influence of the Rankine hull panels on the hull collocation points,
A5 contains the influence of the Havelock free-surface panels on hull collocation points,
A5 contains the influence of the Rankine panels on free-surface collocation points, and

A5 contains the influence of the Havelock panels on the free-surface collocation points.

The vectors B® and BZ contain the boundary conditions to be satisfied on the hull and
free surface respectively.

There is no difficulty calculating the A1; and As; sub-matrices since the influence of
Rankine panels is well defined for arbitrary field points. However, evaluation of the A,
and Ago sub-matrices can be problematic since either the source point, the field point, or
both, might occur at positions above the level of the undisturbed free surface, z = 0. The
eF+2") term in the Havelock Green function represents the attenuation of free-surface
waves due to either the depth of the source point z or the field point z’, and generally both
z and 2’ are < 0. With positive values of the source and field points, the influence of the
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Havelock wave potential will grow exponentially. One method of avoiding this problem is
to use a coordinate system fixed relative to the local free surface. Then the position of
both the field point and the source point can be taken as the local depth and the ek(z+2")
term will always be < 1.

In the calculation of the Ass sub-matrix, we have employed an ad hoc assumption that
since both the source point and the field point are located on the free surface at zero depth,
the depth attenuation term is equal to unity. In the calculation of the A5 sub-matrix, the
Havelock source point is always located at zero depth and the depth of the field point on
the hull is calculated relative to the local dynamic waterline. Otherwise, the subroutines
that we use to calculate the influence of Havelock singularity distributions are similar to
those used in the linear Havelock/Dawson code.

As always, the Wigley hull was the initial geometry used to investigate the convergence
of the iterative scheme. Since the wetted area of the hull will change with each iteration,
one should repanelize at every step. However, for this investigation, the hull was assumed
to be fixed in sinkage and trim and we could then simply panelize the hull to some distance
above the design waterline, and assign a source strength of zero to each panel that is not
submerged at any particular iteration. We allowed the iterative scheme to proceed until
the Rankine and Havelock singularity strengths associated with the perturbation poten-
tial were two orders of magnitude less than the singularity strengths calculated for the basis
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Figure 1 — Free-Wave Spectra Calculated for First 4 Iterations



flow (Havelock/Dawson solution). We found that this convergence criterion was satisfied
in just 4 iterations for the Wigley hull test case at Fn = 0.35. Moreover, the radiating
waves had converged after only 2 iterations, as can be seen from the plots of the free-wave
spectra. The hull was panelized with 604 Rankine panels and a similar number of Havelock
panels were distributed on the free surface. These computations required about 22 minutes
to run on a 400 MHz Macintosh G3.

We ran a second test case using a more complex hull geometry — a high-speed naval
combatant hull form. This geometry required 890 Rankine panels to define the hull shape.
The local free-surface domain was panelized with 975 Havelock panels. For an 18-knot case
(Fn = 0.23), the convergence criterion was met in 7 iterations. However, as was observed
with the Wigley hull test case, the calculated free-wave spectra are quite close to the final
nonlinear results even after the first two iterations. In the near-field, the dominant effects
of the nonlinear free-surface conditions appear as a deepening of the wave troughs, an
increase in the wave slopes, and a minor phase shift in the bow wave. This computation
took about 100 minutes on the same Macintosh G3 computer.
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Figure 2 — Nonlinear vs. Linearized Free-Surface Waves
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