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An e�cient computational procedure is developed for solving fully nonlinear unsteady free-

surface problems in two dimensions under gravity. Speci�cally, we solve here a nonlinear Cauchy-

Poisson problem for a 
ow commencing from rest with a given initial free surface. Our task is

thus to solve Laplace's equation �xx + �yy = 0 for the velocity potential �(x; y; t), with vanishing

velocity at in�nity for all �nite time t, and two nonlinear boundary conditions on an (unknown)

free surface, namely the requirement that it be a material surface, and that the pressure on it be

equal to atmospheric.

We use a semi-Lagrangian approach, in which the equation of the free surface is speci�ed

parametrically at any time t as x = X(s; t); y = Y (s; t) where s is a marker of a given free-

surface point, notionally the initial arclength along the free surface. Then there are three equations

determining the free surface evolution, namely (at �xed s, i.e. for each separate free-surface point)

dX

dt
= u

dY

dt
= v

d�

dt
=

1

2
(u2 + v2)� gY

where �(s; t) = �(X(s; t); Y (s; t); t), and u = �x; v = �y.

It is convenient to consider this system of equations as three ordinary di�erential equations for

the functions (X;Y;�) of time t, at each �xed free-surface point s. These ODE's can be advanced

forward in time by any convenient numerical code, providing the quantities on the right are known

at the current time t. If the current potential � is known for all s, the tangential velocity can be

computed immediately, but not the normal velocity.

At some point in the solution process, the actual Laplace equation must be solved, and this

is that point. We therefore must solve a Dirichlet problem with � = � assumed known (at the

present time t) on the present free-surface boundary, which is assumed temporarily �xed and known.

This Dirichlet solution gives �(x; y; t) everywhere, and hence allows determination of both velocity

components (u; v), so we can proceed to the next time step t+�t. During that step the shape of

the free surface via X(s; t+�t); Y (s; t+�t), and the value of � = �(s; t+�t) on the free surface

are updated.

To solve the Dirichlet problem, we simply assume that the velocity potential we require is a

sum of N sources, namely

�(x; y; t) =

NX
j=1

qj logR;

for some to-be-determined source strengths qj, where R is the distance from the j'th source to

the �eld point (x; y). The sources are located at prescribed positions (Xj ; Yj), the only essential

requirement for which is that they lie outside the �eld of 
ow, i.e. above the free surface. Given

values �i = �(xi; yi) on a general surface de�ned by N given discrete collocation points (xi; yi); i =

1; 2; : : : ; N , it is then only necessary to solve the linear system of equations

NX
j=1

Aijqj = �i;



for qj, where

Aij = log
q
(xi �Xj)2 + (yi � Yj)2:

The far-�eld boundary condition can be enforced at this stage by adding a constraint that the total

source strength be zero, or more simply by replacing the computed value of the last free-surface

height yN by zero; even more simply, it can be ignored provided the domain extends far enough,

and this is the option presently implemented.

In practice, this is a totally straightforward and computationally e�cient task, the matrix Aij

requiring only a small number of elementary arithmetic operations to compute, and solution for

qj being done by a standard linear equations routine. The velocity components u; v are then also

available by summation of elementary functions. This technique is e�cient both in programming

and computing time, relative to techniques where the singularities are smoothed out over panels.

The only sophistication needed in the technique is in choice of the appropriate source location

points (Xj ; Yj), de�ned by a certain o�set distance and direction outside the 
uid domain. Most

reasonable choices work well for gentle disturbances, but there is value in careful placement of

sources for violent free-surface motions. See [2, 3] for further discussion of this matter.
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Figure 1: Evolution from rest of an initially semi-circular depression in a plane free surface.



The resulting computational method is very fast, economical and accurate. In particular, it is

not necessary to \smooth" the free surface during the course of the computation. Such smoothing

seems to have been needed to remove spurious grid-scale oscillations ever since the original work

of Longuet-Higgins and Cokelet [1], and recent versions of this algorithm have required smoothing

routines of a very high degree of sophistication. In contrast, the present results seem inherently

smooth.

Solutions of similar problems for sloshing in a rectangular tank were given in [3], the region of


ow being then bounded by two vertical side walls and a horizontal bottom. Any such additional

boundaries require a modi�cation of the fundamental source potential logR. For example, plane

walls and circular cylinders are easy to accommodate by suitable image sources. Even in the present

study for an unbounded domain, it is convenient to assume that the initial elevation and hence the

resulting 
ow is symmetric about x = 0, which means that the 
ow is the same as if there was a

vertical wall at x = 0. Building in this wall by use of an image source reduces the size of the matrix

by half.

Nevertheless we must now allow the 
ow to extend to x = +1, which is at �rst sight potentially

more di�cult than the �nite-domain studies of [3]. However, a simple approach of distributing the

required sources and collocation points on a grid that smoothly extends toward in�nity seems

to work quite satisfactorily. A number of such grids have been tried, but a simple and e�ective

choice is one in which, after assigning half of the points (equally spaced) to the non-zero initial

free-surface elevation, the remaining points initially are placed on the x-axis with a spacing that

increases geometrically, at present with a ratio of 1.1. For example, with N = 160 the furthest

point is at about xN = 400. Note that in the present semi-Lagrangian method, these nodal points

(and the corresponding source points) move with the 
ow, and hence change with time. It seems

that the more remote sources have little e�ect on the 
ow in the �nite part of the domain, and

their strengths tend to zero quite rapidly.

The �rst results shown here are for an initial surface displacement similar to that used in [3],

namely an initial semi-circular depression of unit radius. Without loss of generality, we can scale

g = 1. This particular run used N = 640 points, with a source o�set distance of 3 times the

local grid spacing and a �xed Runge-Kutta time step of 0.02, although pro�les are shown only at

intervals of 0.1, up to t = 3:6. Up to that time, the results are the same to graphical accuracy with

much lower N (typically N = 80), and also with much larger timesteps, and o�sets between 2 and

4 times the local grid spacing. Finer grids and time steps are needed to pursue the computations

nearer to the breaking crisis which occurs at about t = 3:7. Figure 1 shows only the portion

of the free surface for x < 2; the free surface smoothly approaches zero beyond that point. At

the last time shown (t = 3:6) the free surface is about to break near x = 1. At the earlier time

t = 3:0, a maximum positive elevation of about y = +1:6 has occurred at the central point x = 0,

and this sharp but smooth spike has begun to fall, remaining well captured by the program until

computations are stopped at about time t = 3:7 by actual physical breaking near x = 1.

Figure 2 shows corresponding results for initially semi-elliptical depressions with drafts of 0.5

and 0.3, computed with N = 160. At draft 0.5, the central spike with maximum height of about

0.7 occurring at about time t = 2:6 is much sharper (though lower), and this presents di�culties

to the present implementation of the program which cause it to fail at about t = 3:4, a time when

it is not yet possible to tell whether breaking will occur.

On the other hand, at draft 0.3, the program is able to continue essentially inde�nitely; results

are now shown for x < 3 at a plotting interval of 0.4, up to t = 6:8. The central spike occurring

at about time t = 2:4 has reduced to a mere gentle peak, and the main smooth crest subsequently

moves o� toward in�nity without breaking, followed by subsidiary troughs and crests.

These particular con�gurations are studied because of possible relevance to the 
ow immediately

behind the transom of a slender ship moving at high speed. For example, the outward moving crests

in the results for the ellipse with draft 0.3 represent diverging waves in that model.
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Figure 2: Initially semi-elliptical depressions with drafts 0.5 and 0.3.
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