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1. Introduction

In spite of increasing needs of o�shore industry and shipbuilding, the three-dimensional impact

problem is far to be well solved yet. However, within the classical assumptions of Wagner's theory

[1] there exists a way to derive exact solutions of the 3D impact problem thus providing preliminary

qualitative results. This can be done with the help of so-called inverse Wagner's problem [2].

Wagner's approach is formally valid for the initial stage of a blunt body impact onto the liquid

free surface. During this stage the boundary conditions can be linearised and imposed on the

initial position of the free surface. In the direct problem of impact the body shape and the velocity

of its entry are given. For the most general con�gurations this problem is very complicated and

di�culties are connected with the coupled resolution for both the liquid 
ow and the position of the

contact region between the entering body and the liquid. The impact problem is non-linear even

within the linearised Wagner's theory. The direct Wagner's problem has been e�ectively solved for

both two-dimensional and axisymmetric cases [3]. Three-dimensional e�ects are handled at present

mainly by using aspect-ratio correction factors.

The inverse problem o�ers an attractive alternative. Within this problem the body velocity

and the contact region shape are prescribed at any instant and it is required to determine the

liquid 
ow and to reconstruct the body shape. The inverse problem of impact is linear and, even

in the most complicated cases, can be reduced to integral equations and quadratures. For elliptical

contact regions the calculations can be performed analytically.

For various applications of industrial interest the case of elliptic contact regions is general

enough to cover a wide rage of physical con�gurations [3]. Semi-axes of the contact region at any

instant of time can be either given in advance (inverse Wagner's problem) or de�ned by additional

constraints (optimization problem). It should be noted that the optimization problem includes the

solution of the inverse Wagner's problem but can be much more complicated if the constraints are

complex. In the present report a free fall of a blunt body onto an initially calm liquid free surface

is considered. The mass of the body M is given, and the hydrodynamic force on the body F (t),

where t is the time, is prescribed for t being small enough. We shall reconstruct the body shape,

entry of which provides the given resistance force. The problem is considered under the following

assumptions: (i) the liquid is ideal and incompressible; (ii) the liquid 
ow is three-dimensional and

irrotational; (iii) the contact region between the liquid and the body is elliptic; (iv) the eccentricity

of the contact region e is independent of time; (v) the boundary conditions on the liquid surface

can be linearised and imposed on its initial position. The considered problem can be reduced to

the inverse Wagner's problem and e�ectively analyzed. The obtained theoretical results may be of

help for preliminary design of bodies subject to water impact.

2. Formulation of the problem

Initially (t = 0) the resting liquid occupies the lower half-space, z < 0, and a body touches the

liquid free surface, z = 0, at a single point which is taken as the origin of the Cartesian coordinate

system Oxyz. The vertical velocity of the body U(t) is governed by the second Newton's law:

MUt = Mg � F (t) t > 0; and U(0) = U0; (1)

where g is the gravity and F (t) is the hydrodynamic force acting on the entering body. According

to hypotheses mentioned above, the velocity potential �(x; y; z; t) satis�es the following equations:8>><
>>:
�xx + �yy + �zz = 0 z < 0

� = 0 z = 0; (x; y) =2 D(t)

�z = �U(t) z = 0; (x; y) 2 D(t)

�! 0 x2 + y2 + z2 !1

(2)
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where D(t) is the contact region between the liquid and the moving body. The boundary of D(t)

is referred to as the contact line, position of which is convenient to describe in the implicit form:

t = tc(x; y). It is clear that tc(0; 0) = 0 and D(t) = fx; y j tc(x; y) < tg. If the body position is

given at any instant as z = f(x; y)�h(t) {where the function f(x; y) describes the body shape and

the function h(t) is the penetration depth, ht = U(t) and h(0) = 0{ the matching condition on the

contact line follows from the time integration of the kinematic free surface condition:

f(x; y) = h(tc(x; y)) +

Z
tc(x;y)

0

@�

@z
(x; y; 0; �)d� (x; y) 2 R2: (3)

The hydrodynamic force F (t) (within the Wagner's approximation) is then introduced in equation

(1) to give the velocity:

F (t) =
d

dt
[Ma(t)U(t)] ) U(t) =

M(U0 + gt)

M +Ma(t)
(4)

where Ma(t) is the added mass of the 
oating disk D(t). It is worth noting that the force depends

on the shape of the contact region and the body velocity but not directly on the body shape.

If the function tc(x; y) is given, the shape of the contact region D(t) is known at any instant of

time. The added mass Ma(t) is then calculated; equation (4) yields the entry velocity U(t) �nally

providing the penetration depth h(t). The vertical velocity of the liquid free surface �z(x; y; 0; t)

follows from (2) and the function f(x; y) is calculated from (3). The procedure is straightforward

and provides exact solutions of the Wagner's problem. Inverse Wagner's problem for self-similar


ows was discussed by Borodich [4].

Analysis of the described procedure indicates that a main di�culty in the inverse problem

is to calculate the distribution of the velocity potential �(x; y; 0; t) over the disk D(t) from the

boundary-value problem (2). Once the distribution has been found the computations are reduced

to quadratures which can be evaluated with a given accuracy. Accuracy of the numerical solution

of problem (2) is not easy to control; that justi�es the importance of its exact analytical solutions.

3. Inverse problem for elliptic case

Analytical solution of problem (2) is known [5] for elliptic region D(t). This solution can be

derived as a limiting case of the well-known solution for an ellipsoid moving in an unbounded

liquid. The boundary of the contact region is given by equation: x2=a2(t)+y2=b2(t) = 1. For given

semi-axes a(t) and b(t), b(t) > a(t), the function tc(x; y) is obtained by resolving this equation with

respect to time t. The solution of (2) provides the distribution of the velocity potential over the

contact region

�(x; y; 0; t) = �
U(t)a(t)

E(e)

s
1�

x2

a2(t)
�

y2

b2(t)
; e =

q
1� a2=b2; (5)

and the vertical velocity of the liquid free surface

@�

@z
(x; y; 0; t) = �

U(t)

E(e)

"
E(arcsin

b(t)p
�+ b2(t)

; e)�

s
b2(�+ a2)

�(�+ b2)

#
;

x2

a2(t) + �
+

y2

b2(t) + �
�1 = 0;

(6)

where �(x; y; t) is the positive root of the second equation, and E(�; e) and E(e) are the elliptic

integrals of the second kind. The added mass of the elliptic disk is Ma = (2�=3)�a2b=E(e). The

entry velocity U(t) is given by (4) and the vertical velocity of the free surface by (6) for any x and

y. Evaluation of the integral in (3) �nalizes the reconstruction of the entering body shape.

The case of constant entry velocity is more simple. In that case, it is shown [2] that the entry

of elliptic paraboloid provides an elliptic contact region. Elliptic paraboloid with two parameters is

a quite general shape to approximate almost any blunt body near the impact point. The obtained

analytical solution can be used to evaluate the aspect-ratio correction factor and to analyse the
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accuracy of results given by the strip theory for elongated bodies.

4. Design of entering body shape

The problem of reconstruction of entering body shape which provides a prescribed history of

the resistance force F (t) = F��(t=T ) is considered. Here F� is the constant, T is the time scale

and �(t0) is the non-dimensional function, t0 = t=T . The entering body shape has to be determined

for given function �(t0) and given constants M , U0, F�, T and e. Two cases are considered: (i)

�(t0) = 1 and (ii) �(t0) = t0 exp (�t0). The �rst case is expected to provide the body shape, for

which the entry velocity reduces in an optimal way without high acceleration. The second case

roughly imitates a typical history of the impact force.

In the �rst case the body acceleration is constant, U(t) = U0(1� c0t1), and the semi-axis are:

b(t) = b0[t1=(1� c0t1)]
1

3 ; a(t) = b(t)
p
1� e2;

t1 =
gt

U0

; c0 =
F�

Mg
� 1; b30 =

�
3

2�

E(e)

1� e2

�
F�

g�

It is seen that b(t) = O(t
1

3 ) as t ! 0, which indicates that f(x; y) = O([x2 + y2]
3

2 ) close to the

impact point. With known semi-axes of the contact region, the inverse Wagner's problem is solved

according to the procedure described in section 3.

In the second case the semi-axes are given by the formulae a(t) = b(t)
p
1� e2,

b(t) = b0�
1

3

�

(t1=�)

1 + t1 � �(c0 + 1)
(t1=�)

� 1

3

; � =
gT

U0

; 
(�) = 1� (1 + �) exp(��):

Now f(x; y) = O([x2 + y2]
3

4 ) close to the impact point. Calculations were performed for U0 =

4:43m/s, F
�
= 29333N, T = 0:0113s and M = 100kg, which correspond to the falling height of 1m

and the maximum deceleration of 10g. Two cases were considered: e = 0:1 and e = 0:9. The time

variations of the body acceleration and velocity are illustrated in �gure 1a. The time growths of the

semi-axes a(t) and b(t) are depicted in �gure 1b. It should be noted that the penetration depth h(t)

is always smaller than the characteristic lengths of the contact region, which is in accordance with

the hypothesis of linearization of the Wagner's theory. The calculated body shapes are plotted

in �gures 2. In addition the free surface shape is drawn up to its contact with the body. The

contact line for e = 0:9 is clearly a three-dimensional curve. The deformations of the free surface

for a 3D con�guration vanish more rapidly than for the 2D case as the distance increases from the

body. Side views show the wetted parts of the body surface; there the horizontal lines present the

positions of the contact line for di�erent times with the time step �t = 0:0048s. The calculated

shapes can be used in drop experiments to justify the presented approach.
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Figure 1: a) Time variations of the velocity and non-dimensional acceleration (in absolute values);

b) time variations of the semi-axes: a(t) and b(t) and penetration depth h(t) for two eccentricities:

e = 0:1 and e = 0:9.

Figure 2: left: generated shapes with eccentricities e = 0:1 and e = 0:9 drawn at instant t = 0:1s;

center and right: upper and side views of the shape under the undisturbed free surface; the vertical

size is stretched with respect to the horizontal dimensions (factor 3:left, 4:right).
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