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1. Introduction

A column-supported type very large floating structure (VLFS), consisting of a thin upper deck and a multi-
tude of buoyancy columns, is considered to be advantageous in that the wave forces and hence wave-induced
responses are small relative to a box-shaped pontoon type. However, when a large number of identical bod-
ies are placed in an array with equal separation distance, near-resonant modes may occur between adjacent
bodies at some critical frequencies, and cause large wave forces on each element of the array.

In this paper, 64 truncated cylinders arranged in 4 rows and 16 columns are considered as a part of a
real structure to check occurrence of near-resonant modes and performance of the wave interaction theory
based on the potential flow. Experiments are conducted to measure the wave forces on a couple of element
cylinders, as well as the total force on all cylinders, and the wave elevation along the longitudinal center
line. Numerical computations are also performed using Kagemoto & Yue’s interaction theory, with special
care paid on the numerical accuracy and convergence.

Attention is focused on variation of the wave elevation and forces near critical frequencies. Since the
reflection of waves is related closely to the steady drift force and moment, computations of the mean drift
force and moment based on the momentum-conservation principle are implemented and compared with
corresponding experiments.

2. Wave Interaction Theory

We consider a column-supported type VLFS, in which a great number of identical columns are placed in
a rectangular array with equal separation distance. The elementary column considered here is a truncated
circular cylinder with radius a and draft d. The distance between centerlines of adjacent cylinders is 2s in
both x- and y-axes. The positive z-axis is directed downward, with z = 0 the undisturbed free surface and
z = h the constant water depth. Incident plane waves propagate in the direction with angle β relative to
the positive x-axis.

The boundary conditions are linearized and the potential flow is assumed. Then, we express the velocity
potential in the form

Φ(x, y, z, t) = Re
[
φ(x, y, z) eiωt

]
, (1)

φ =
gA

iω

[
φI + φS −K

∞∑
k=1

Xk

A

{
φk + ϕk

} ]
, (2)

where g, A, ω and K are respectively the gravitational acceleration, the amplitude of an incident wave, the
circular frequency, and the wavenumber given by ω2/g.

φI is the incident-wave velocity potential expressed by

φI =
cosh k0(z − h)

cosh k0h
e−ik0(x cos β+y sin β) , (3)

where k0 is a solution of the wave dispersion relation, k0 tanh k0h = K.
φS in (2) represents the scattering potential. Let the number of floating bodies be denoted by NB. Then

the scattering potential due to the j-th body, φj
S , may be expressed in the form

φj
S =

{
Aj

S

}T {
ψj

S

}
, (4)



where
{
Aj

S

}
is the unknown coefficient vector, and

{
ψj

S

}
is the vector comprised of the progreesive and

evanescent wave components, which can be expressed as

{
ψj

S

}
=

{
Z0(z)H

(2)
m (k0rj) e−imθj

Zn(z)Km(knrj) e−imθj

}
. (5)

Here

Z0(z) =
cosh k0(z − h)

cosh k0h
, Zn(z) =

cos kn(z − h)
cosknh

, (6)

and kn is the evanescent-mode wavenumbers satisfying kn tan knh = −K (n = 1, 2, · · · ). The local cylindri-
cal coordinate system (rj , θj , z) has been used, with the origin placed at the center of the j-th body. The
number of terms in the θ-direction, m, is taken as 0, ±1, ±2, · · ·.

Using the wave interaction theory developed by Kagemoto & Yue, the unknown coefficient vector in
(4) can be determined, with all effects of interactions with other bodies taken into account exactly in the
framework of the potential theory.

In the radiation problem, Xk in (2) denotes the complex amplitude of the k-th mode of motion. In
the definition of the mode, not only rigid-body motions but also a set of “generalized” modes to represent
elastic deflections of a deck are assumed to be included. φk is the velocity potential due to the single-body
oscillation with unit velocity in the k-th mode (without any interactions), and ϕk is the remaining part due
to hydrodynamic interactions with other bodies.

By solving the boundary-value problem for a single body, φk may be explicitly given in the form

φj
k =

{Rj
k

}T {
ψj

S

}
, (7)

where
{Rj

k

}
is known and referred to as the vector of radiation characteristics.

The problem for ϕk is essentially the same as the scattering problem, and thus its solution is given by

ϕj
k =

{
Aj

k

}T {
ψj

S

}
, (8)

where
{
Aj

k

}
is unknown but can be determined in exactly the same way as for the scattering problem.

Collecting all contributions due to the body disturbance, the velocity potential except for φI in brackets
of (2) (let us denote this potential by φB) can be expressed as

φB =
NB∑
j=1

{Aj
}T {

ψj
S

}
,

{Aj
}
=

{
Aj

S

} −K

∞∑
k=1

Xk

A

({Rj
k

}
+

{
Aj

k

})
.




(9)

Then using (9), the wave elevation at any point on the free surface (z = 0) can be computed by

ζ(x, y) = A
[
φI(x, y, 0) + φB(x, y, 0)

]
. (10)

3. Velocity Potential at Far Field

At a large distance from the structure, evanescent-wave components decay. Thus we may consider only the
progressive waves in (9) expressed by the Hankel function.

In terms of the global coordinate system O-rθz, the Hankel function can be written by Graf’s addition
theorem in the form

H(2)
m (k0rj) e−imθj =

∞∑
�=−∞

Jm−�(k0Lj0) e−i(m−�)αj0
{
H

(2)
� (k0r) e−i�θ

}
, (11)

where Lj0 and αj0 are the radial distance and azimuth angle of the origin of the global coordinate system
when viewed from the center of the j-th body, and r must be larger than Lj0 for (11) being valid.

Substituting the above relation into (9), the disturbance potential at far field can be written as

φB =
∞∑

�=−∞
A�

{
Z0(z)H

(2)
� (k0r) e−i�θ

}
, (12)



where A� ( % = 0, ±1, ±2, · · · ) denotes the components of the vector given by

{A}
=

NB∑
j=1

[
Mj0

]T {Aj
}
. (13)

Here,
[
Mj0

]
is the matrix when writing (11) in a matrix form, and

{Aj
}
is defined in (9).

The incident-wave potential, φI given by (3), can be also expressed in terms of the cylindrical coordinate
system. Therefore the total velocity potential can be written as

φ =
gA

iω

∞∑
�=−∞

Z0(z)
{
α�J�(k0r) +A�H

(2)
� (k0r)

}
e−i�θ , (14)

where α� is the coefficient explicitly given by α� = exp{i%(β − π/2)}.

4. Wave Drift Force and Moment

Based on the conservation principle of linear and angular momentum, we can relate the mean drift force and
moment on a structure to the far-field potential. In the present case, necessary integrations with respect
to z and θ for a large value of r can be analytically performed in terms of (14). The details of derivation
are omitted here, but using orthogonality relations in trigonometric functions and Wronskian formulae for
Bessel functions, we can obtain the following results:

F x = −ρgA2

2
k0

K

k2
0

K + h(k2
0 −K2)

Im
∞∑

�=−∞

[
2A�A

∗
�+1 + α�A

∗
�+1 +A�α

∗
�+1

]
, (15)

F y = −ρgA2

2
k0

K

k2
0

K + h(k2
0 −K2)

Re
∞∑

�=−∞

[
2A�A

∗
�+1 + α�A

∗
�+1 +A�α

∗
�+1

]
, (16)

Mz = −ρgA2 1
K

k2
0

K + h(k2
0 −K2)

Re
∞∑

�=−∞
%
[
A�A

∗
� + α�A

∗
�

]
. (17)

5. Experiments

A truncated circular cylinder with diameter D (= 2a) = 114 mm was used as an elementary float, and 64
cylinders were arranged in an array with 4 rows (in the y-axis) and 16 columns (in the x-axis) with equal
separation distance of 2s = 2D between the centerlines of adjacent cylinders in both x- and y-axes. The
draft of cylinders was set to d = D and 2D, but here the results of d = 2D will be mainly shown.

Experiments were carried out in head waves with all motions fixed. Measured items were wave elevations
at 16 points along the centerline of the array, wave forces on elementary cylinders placed at No. 1, No. 9, and
No. 15 columns along No. 2 row, and at the same time the total forces on 64 cylinders. The frequency range
in measurements was Ks = 0.2 ∼ 1.6 and the wave steepness H/λ (the ratio of wave height to wave length)
was set to approximately 1/50.

6. Results and Discussion

After convergence of numerical results was checked for Ks = 1.0, β = 0◦ and h = 3d, the number of
terms in the θ-direction (M) and the number of evanescent modes (N) were determined to be M = 4 and
N = 3, which yields an absolute accuracy of five decimals. In this case, the total unknowns for NB = 64
are (2M + 1)× (N + 1)×NB = 2304. To enhance numerical efficiency, the double symmetry relations with
respect to the x- and y-axes are exploited, reducing the number of unknowns to 1/4.

Although there are many measured results, only a couple of results are shown here, because of shortage
of the space. Fig. 1 shows the wave elevation as a function of Ks, measured at between No. 1 and No. 2
columns (the upwave side). Likewise, Fig. 2 and Fig. 3 are the results near the midst of the array and the
downwave side, respectively. We can see rapid variation at the upwave side and large-amplitude waves in
the midst of the array for Ks 
 0.8 ∼ 1.24. Ks 
 1.24 may correspond to the Neumann trapped mode,
discussed by Maniar & Newman. Numerical results agree well qualitatively with experiments, but tend to
overpredict as the point compared goes downstream. No breaking waves were observed in the experiments.



Thus the difference from the potential-theory results may be attributed to a decaying mechanism due to
development of the oscillatory boundary layer or other viscous effects.

Figure 4 shows the surge drift force in head waves. Analogeous to the wave elevation at the upwave
side, rapid variation can be seen at frequencies less than Ks 
 1.24. When Ks is greater than this critical
value, the waves are mostly reflected and thus the drift force becomes large. Although measured values are
scattered, the overall agreement is favorable between computed and measured results.
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Fig. 1 Wave elevation at upwave side Fig. 2 Wave elevation at midst of the array
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Fig. 3 Wave elevation at downwave side

Fig. 4 Surge drift force acting on 64 cylin-
ders arranged in 4 rows and 16
columns in head waves


