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1 Introduction

In this presentation we study the rigid body motion and the elastic behaviour of a ship in periodic

waves. In an earlier paper on the motion of large elastic platforms it was found that it is possible to

derive a formulation to describe the rigid body motion and the elastic behaviour by means of one

di�erential-integral equation. This equation for the elevation can be solved numerically, without

splitting the problem in the various rigid motion and eigenmode components, as is standard in the

�eld of linear ship motions. One of the goals of this project is to apply similar ideas to an elastic

ship.

In our case the ship is not a rigid structure and we focus on the shears, bending moments and

distortion due to the waves excitation. We consider the ship as an elastic beam and we only study

the time dependent distortions in the hull. It means that we don't take in account the strains due

to gravity and buoyancy forces in still water. In this presentation we �naly restrict ourselves to the

in
uence of head-seas on the heaving and pitching rigid-body motions. Furthermore, to obtain the

bending motion we take an elastic beam as an elastic model for the ship.

We �rst derive a general formulation for a 3D ship, and then give some results for a ship in head

waves for heave and pitch motion, and associated elastic distortion of the hull. In principle we can

extend the formulation for the e�ect of waves on a ship travelling with steady forward speed.

2 Mathematical model

In this section we derive a formulation for a ship without forward speed. We assume the 
ow to be

a potential 
ow and introduce the velocity potential V = r� (x; t) where V is the 
uid velocity

vector. We get for the potential � (x; t) the Laplace equation �� = 0 in the 
uid domain 
.

We have at the linearized free surface z = 0, the linearized kinematic condition �z = �t, and the

dynamic condition �t = �g� where � (x; t) denotes the wave elevation. On the hull, we have the

following kinematic and dynamic conditions:
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where vn is the normal velocity of a point at the hull of the ship, ~w (x; t) the de
ection and ~� (x; t)

the angular rotation due to torsion respectively.

The ship is assumed to behave like a beam with no thickness. We use the linear beam theory to

describe its de
ection ~w (x; t) and its angular rotation ~� (x; t). Then we have the equations:
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where D is the 
exural rigidity, � the mass per length, Is the rotational inertia, Z and � the vertical

force and the moment per length acting on the ship. The shear and bending moment vanish at the

ends of the beam. Thus, we have for the boundary conditions:
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We consider a harmonic wave propagating in the direction � with respect with the main axis of

the ship. The harmonic wave potential, de
ection and angular rotation can be written as

� (x; t) = � (x) e�i!t ~w (x; t) = w(x)e�i!t and ~� (x; t) = �(x)e�i!t. The incident plane wave

potential equals:

�inc =
g�0

!0
expfik0 (x cos� + y sin �) + k0zg (7)

The potential function is split in a incident wave potential and a di�racted wave potential.

� (x) = �inc (x) + �D (x) (8)

We notice that in most theories the di�racted potential is de�ned for the �xed ship, while here it

also contains the e�ect of the rigid- and elastic-body motions.

We �nally introduce the Green's function that ful�lls �G (x; �) = 4�Æ (x� �) , the free surface

condition and the radiation condition.
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Equations (1), (2) and (7) lead to a system of integral equations:

��!2w +
@2

@x2

�
D
@2w

@x2

�
� i�!

8><
>:
Z
C(x)

�D~ndl

9>=
>; � ~ez + �gb (x)w = i�!

8><
>:
Z
C(x)

�inc~n dl

9>=
>; � ~ez (10)

�Is!
2� �

@

@x

�
c
@�

@x

�
� i�!

8><
>:
Z
C(x)

��!
OM ^ �D~ndl

9>=
>; � ~ex + K(x) � = i�!

8><
>:
Z
C(x)

��!
OM ^ �inc~n dl

9>=
>; � ~ex

(11)

where b (x) is the width of the ship at abscis x, K(x) the restoring moment for a slice at abscis x

and C the line integral over the wetted hull at abscis x.
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3 Numerical method

The di�erential equations are discretised by means of a di�erence scheme, while the integral equa-

tion is discretised by means of a piece-wise constant panel distribution. The �nal set of equations

is a matrix equation for the coupled unknowns. For the purpose of calculation, the hull is divided

into N slices. Each slice is supposed to have a constant deplacement (wi; �i) .

As we are using a �nite di�erence approach to solve the dynamic equations for the beam, we in-

troduce 4 supplementary points for the mesh describing the beam in order to represent the fourth

order derivative for the beam equation. We denote the di�racted potential on each of the M panels

of the mesh describing the ship's hull by �D
i
.

Equations (3), (4), (5), (6) (10) and (11) lead to a linear system for the discretized problem. The

solution vector is written in the form

~X = f�D1 ; �
D

2 ; � � ��
D

M
; w

�1; w0; w1; w2; � � �wN ; wN+1; wN+2; �0; �1; �2; � � � ; �N ; �N+1g (13)

(ωι,θι)
(ωι,θι)

4 Numerical results for a paralepipedic barge

We present some numerical results for a thin barge of dimension lx=100m, ly=10m, lz=5m. The

ship is cut in 30 slices and has a constant 
exural rigidity of 1011Nm2. The computations are

carried out for a wave direction parallel to the ship direction, hence, � (x) � 0. The incoming wave

has a wave length of 45m and a unit amplitude. We are so here only interested in the motion

associated with the heave and pitch motion and con�ned in a vertical plane. The �rst two graphics

represent the real part and the imaginary part of the total vertical de
ection, ie the de
ection

at t = 0 and t = T=2 including the heave, pitch motion and the bending distortion due to the


exibility of the ship.

The graphs of �gure (2) represent the bending distortion and moment.

We can clearly see the �rst two principal bending modes of an elastic vibrating uniform beam.

The graphs of �gure (3) represent the amplitude of the bending moment. for a wave length equal

to the length of the ship, the amplitude is maximal at mid-point of the ship.
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Figure 1: total de
ection
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Figure 3: Amplitude of the bending moment
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