Uniform solution for water wave diffraction-radiation
at small forward speed in water of finite depth
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Wave diffraction radiation at small forward speed has received much attention in the recent past, essen-
tially for two reasons : the first one is the need to evaluate the influence of current on the first order
quantities (forces, air gap, ...) and the second one is the calculation of the wave drift damping coefficients
which are important in the studies of the slow drift motions of off-shore structures. Several methods of
calculations were proposed [6, 11, 10, 3]. The most powerful methods are based on the use of the Kelvin
type Green functions because they permit the resolution of the small forward speed problem in the same
way as the zero forward speed one, the only essential difference being the Green function. Unfortunately
the direct evaluation of the Green function is not trivial [4, 1] and usually we take a profit of the small
forward speed assumption by introducing the additional perturbation with respect to the forward speed
parameter 7 = Uw/g. The inconvenient of this approach is the secularity (unphysical growth for R — 00)
of the solution. As far as the infinite water depth is concerned, the first attempts to overcome this dif-
ficulty were made in [6] where the authors operate on the wave part (residues) and found the necessary
corrections in the far-field. A more direct approach was performed in [9] where the nonsecular solution
was obtained by operating directly on the integral representation of the Green function and very simple
expressions were found. The same solution was reproduced in [7] by completely different method based
on the multiple scale technique. In the case of finite depth the situation is more complicated because of
the more complex expressions for the corresponding Green function and, up to now, the only practical
numerical code is based on the secular solution [5]. It is however important to note the work presented
in [1] where the uniform solution for the Green function was presented based on the direct use of the in-
tegral representation, but the numerical difficulties are numerous so that no practical numerical code was
presented. On the other hand the method presented in [9] for the infinite water depth has no equivalent
in the finite depth and it is not clear that the simple expressions could be obtained. In summary, we can
say that the efficient uniform solution for finite water depth doesn’t exists up to now. The purpose of
the present paper is to offer a simple practical way to solve this problem.

BVP and integral equations

The assumptions of the potential flow (A¢ = 0 in the fluid) lead to the following linearised free surface
condition in the frequency domain [¢(x,t) = R{p(x)e™**}:
. Op Bp . _- . 9%

—vp + 2z7'5; + B 2irVe¢Vep + iTpes = 0 1
where v = w? /g, w = wy — koU cos B is the encounter frequency, wp is the fundamental frequency of the
incomming wave, S is its incident angle, ko is the wavenumber (w3 = gko tanh koh), h is the waterdepth
and ¢ is the double body potential.

The decomposition (¢ = @1+ ¢ +79N) proposed in [3] is adopted here so that the follomng free surface
conditions are deduced :
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with Q = 2iTVV (@1 + 1) — i1 + oL) 5= Bz‘f’ and ¢ denoting the incident wave potential. .
This decomposition leads to the following integral representation for the potential and integral equations

167




for the unknown source strength o :
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where G(x; &) is the Green function, V,, = ~8¢p;/8n for diffraction, V,, = n; for radiation, and m; are
the well known terms accounting for the interactions of the double body flow with the body motions.
As we can see the integral equations are very similar to the zero forward speed case except for the free
surface integral which can be evaluated relatively easily because of its local character. So the main
difficulty is to find the efficient way to evaluate the Green function.

Green function

According to the above discussions, the small forward speed Green function G(x;£) should satisfy the
following set of equations :

AG =4(x—-&) 02z2>2-h
-I/G'+2i'rgg+?—c-=0 z=
oG dx 0z 5)
£(€,6,2) ikr(1+2rok/0v cost
G- GRO+2r0/oves0) Ry o
vkR

with v = k tanh kh, and ¢ denoting the Dirac delta function.
The direct perturbation G = Gg + 7G) leads to the following solution for G :

9°Gy
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This solution for is secular and G; behave as Gy = fi(,9, z)(x — £)(kR)~'/2¢*R for R = cc.
We propose now to use multiscale pertubation and we write :

G(x;€) = go(7; x;€) + 791 (73 %; €) (7)

G] =-2i

where v = 7(z — §).
The two functions go and g; should satisfy the following equations :
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The most general solution for gg is :
g0 = F(7)Go ©)

where Gy is the classical zero forward speed Green function (with the encounter frequency).
On the other hand the particular solution for g; can be written in the form :

01 = FO)[-25 02 + Oz ~ £)Gol © o

where C is the unknown constant to be determined by requiring the nonsecularity of the solutlon The
Poisson equation (8) for g; gives :

252000 () + 3’;(7"’)] =0 (11)
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from which we deduce :
F(y) =S (12)

Knowing the behaviour of Gy for large R, the radiation condition for g1 (8) gives the following value for
the unknown constant C : %

C = —Zlka‘ (13)
so that the final solution for the Green function becomes :
— pRir3kk(z—£) 9 0°Go Q_’E -
G=e¢ {Go Zirlz—22 + k(s §)Go]} (14)

If we compare the present expression to the secular one (6) we can see that very small modifications are
necessary to obtain the uniformly valid solution. The most difficult term to calculate remains the double
derivative of the zero forward speed Green function with respect to the wavenumber and the z coordi-

-nate. In the case of infinite depth, where the final expressions for the uniform solution are essentially the
same (7], this can be done relatively easily because the zero forward speed Green function Gg has simple
form and derivatives can be obtained in an analytical way so that only things we need are zero forward
speed Green function and its first radial derivative [3]. The finite water depth case is more complicated
because of more complex representation of the zero forward speed Green function and the higher order
derivatives should be calculated directly. In this case the efficiency of the calculations depends on the
approximations used for the zero forward speed Green function. The most convenient way to approxi-
mate the Gy in finite or infinite depth is the use of the Chebychev polynomial approximations [8, 2]. In
this case the higher order derivatives can be obtained by direct derivation of the Chebychev polynomials
provided that the coefficients for these polynomials were obtained with sufficient accuracy (10~% seems
to be sufficient). This is the case in our in house code HYDROSTAR, so that the higher order derivatives
of Gy can be calculated accurately without important numerical difficulties.
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Figure 1: The real (top) and imaginary (bottom) parts of 4xG vs. vz for infinite and finite water depth. The
parameters arew =06, z=0., {(=0., y=0., r=0.1. N

Numerical results

On figure 1 we present first the results for the non-secular solution of the Green function in finite and in-
finite water depth in order to appreciate the influence of the water depth. In order to show the difference
in the behaviour of the secular and nonsecular solutions, on figure 2 are presented the results for both
cases. As we can see the non-secular solution becomes invalid very quickly when we leave the source.
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Also the non-secular solution doesn’t account for the Doppler effect and the wave lengths behind and in
front of the source are the same. However, as it was pointed out in [7], the final solution for the potential
should remain the same on the body up to the order O(r) for both secular and nonsecular solutions. So
we think that even secular solution can be used for the calculation of the forces by pressure integration,
but not, for exemple, for the calculations of the wave elevations near the body as was demonstrated in [3]-
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Figure 2: Real part of the secular and nonsecular solution for 4G vs. vz for the water depth h = 30. and for
the following parametersw =0.6 , z=0., (=0., y=0., r=0.1.
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