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1 Introduction

Wave forces on a cylinder have been a topic of great inter-
est, since correct estimation of forces is important for the
design of a structure that can meet safety standards. In
the past, the attention had been on oscillatory flows past
a cylinder, which is analogous to wave flows past a cross
section of a vertical cylinder. On the other hand, the flow
around a horizontal cylinder, with its axis parallel to the
wave crests, is different from that of a vertical cylinder.

Experiments by Koterayama and Tasiro (1978) showed
that there are discrepancies in the hydrodynamic coeffi-
cients between oscillatory and orbital flows. Later, Chap-
lin (1984a,b) applied boundary-layer analysis to show that
the effects of oscillatory boundary layer around a circu-
lar cylinder in orbital flows may be similar to those by a
potential vortex around the cylinder. The vortex, whose
strength may be independent on the fluid viscosity, caused
the wave forces on the cylinder to be smaller than thosed
predicted by the inviscid solution such as Ogilivie (1963).
Flow observation by Otsuka, et al. (1990) confirmed the
induced circulation around a circular cylinder.

A few cases of study of orbital flows past a cylinder ex-
ist, e.g., Tiemroth (1986), Stansby and Smith (1991), Lan-
drini, et al. (1997). This paper presents a numerical wave
tank that can simulate surface waves passing over sub-
merged cylinders with the effects of separation included.
The wave-generation algorithm for a wavemaker (Liao &
Roddier, 1998) is combined with the Free-Surface Random-
Vortex Method "FSRVM?” (Yeung & Vaidhyanathan, 1994)
to study the interaction of both regular and extreme waves
with submerged cylinders. Viscous effects, which include
the force reduction and induced circulation, are examined
for a circular cylinder. For extreme waves, a case is studied
for a square cylinder with rounded corners.

2 Generation of extreme waves

Generation of deep-water extreme waves involves superpos-
ing waves of different frequencies in a way such that the
crests focus at a given location and time. Its generation
in laboratory relies on properly specifying the wavemaker
motion. When a working spectrum exists (e.g., Dommer-
muth, et al., 1988), we have developed a procedure that
can be used to translate the wave group so that extreme
waves will occur at any desired locations in the wave tank.

Figure 1 shows a wave tank featuring a paddle wave-
maker. Let the wavemaker motion be consisted of a finite
Fourier series with M components, surrounding a central
frequency we, and its motion at y = 0 is:

M
S(y=0,t) = ) _ Sisin(wit - ¢s), (1)

i=1

where S; and ¢; are the amplitude and phase angle for the
ith frequency component w;. Based on linear theory (We-
hausen and Laitone, 1960), the corresponding “far-field”
solution for the potential is:

6= i A; g coshki(y + h)

w: cosh kiR sin(ki:c—-wit+<p,- +kiL:) (2)

t=1

for (x + L) >> h, where the wave amplitude to stroke am-
plitude ratio is:

Ai 4 (sinhkih) kihsinh k;h — cosh k;h + 1 @)
S; — kih sinh 2k;h + 2k;h )

Let z* and t* be the location and time when the extreme
waves occur for an original wavemaker input of (S;,wi, ¢:).
According to linear theory, the free surface: profile is

M
n(z",t*) = Z Aicos(kiz® —wit” + @i + kiL:).  (4)

=1

In order to translate this “target profile”, it is desirable to
find new @; without altering S; and w;. For a new location
of the target profile at

T'=z"4+x, and " =t"+7, (5)
the displacement in time 7 is related to the displacement
in space x by

=X = Llwe
T_Cg’ cg_2kc7 (6)

where k. and ¢, are the wavenumber and group velocity
corresponding to w. of the wave group. The new surface
profile at (*,*) is

M M
n(z", ) = ZAi cos(kiZ" —wit" + @i +kiLy) = ZA,- cos

=1 i=1
{kiz" —wit" + o + kiLs + [@i — @5 + kix —wit]},  (7)

where @; is to be determined. If this profile is to be iden-
tical to n(z*,t*), then the bracket quantity in Eqn. (7)
vanishes:

@i = @i — kix + wiT. (8)

Equation (8) therefore specifies the new component phase
angles @; completely.

Another alternative is to apply Froude scaling ( Liao and
Roddier, 1998), by which all w;s are scaled by the same
factor, resulting extreme waves with a different w.. This,
however, may change S; undesirably.
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Figure 1: Definitions and the computational domain D.

3 Principles of the FSRVM

The FSRVM of Yeung and Vaidhyanathan (1994) consists
of decomposing the flow field into vortical and irrotational
parts. The vortical part of the flow is solved using the
RVM (Chorin, 1973) and the irrotational part of the flow is
solved by a Complex-Variable Boundary-Element Method
(Grosnbaugh & Yeung, 1989). Validation of the FSRVM
can be found in Yeung et al. (1998), Yeung & Cermelli
(1998). Its grid-free property makes it very attractive.
The governing equations for two-dimensional incompress-
ible viscous fluid using a vorticity and stream-function for-
mulation are:

2 = v, ©)
Vi =—¢, (10)

where £k=V x u and D/Dt is the material derivative. The
velocity vector u is given in terms of ¥ by (¢, —¢z). To
model the vorticity field, it is assumed to be a collection of
“blobs” with finite core size:

N(¢)

E(x,t) =) Tif(x—xi(t)),

=1

(11)

where £ is the vorticity at a field point x, and x; is the
location of a blob with strength of circulation I'i. f is
a function representing the vorticity distribution within a
finite-size core of the blob.

The vorticity transport equation (9) is solved by a frac-
tional step method: consisting of a convection step and a
diffusion step at successive half time-steps. At the con-
vection step, blobs are convected according to the fluid
velocity. At the diffusion step, every blob is given an inde-
pendent random walk with standard deviation v2vAt for
each time step.

For convection, u is obtained by solving for the stream
function. 1 is written as a sum of a vortical part and a
homogeneous part,

(12)

Since the vorticity field is assumed to be represented by
Eqn. (11), ¢y is known. It follows that that only ¥» needs
to be determined. This is accomplished by solving for
using a complex potential formulation B = @p+iths similar
to Grosenbaugh & Yeung (1989). With reference to Fig. 1,
the “no-leak” condition is used on 8Dy, D¢, and 8Ds. On
the free surface 8Dy, an inviscid boundary condition can
be used as the shear-layer on the free surface is expected to
have relatively weak effects on the solution. Finally, on the
open boundary 8Ds, a non-disturbance condition can be
applied for sufficiently large distance from the body. These

W =ty + ¥n, where V3, = —€, V¢ =0.

boundary conditions are used to set up a Cauchy’s integral
equation for Bx, where either @5 or % is specified on 8D:

Br($)

B (2) —][ —CTZ—dC =0 for z € 8D. (13)
aD

The no-slip boundary condition on the body surface is sat-
isfied by generating surface vorticity to nullify the tangen-
¢ tial velocity induced by t. A similar integral-equation can

be set up for B in order to calculate the forces on the body
based on Euler’s integral.

4 Regular waves past a circular cylinder
Results of regular waves moving past a circular cylinder
are presented in this section for A = 4.9 cm, T = 1.6 sec,
A = 400 cm, and h = 300 cm. The dimensions of the
circular cylinder are: B = 8 cm for the diameter, and d =
16 cm for the submergence, chosen to be compatible with
the experiments of Ikeda (1988). The distance between the
wavemaker and the cylinder center is 2.

Based on the Morison equation, the wave forces are ap-
proximated by

Fy(t) = pCmoVU + $pCd, BU|U, (14)
Fy(t) = pCmyVV + }pCd, BV|V]|, (15)

where Cm and Cd are “best-fit” inertia and drag coef-
ficients, V is the section area; (U,V) and (U, V) are the
fluid acceleration and velocity vectors at (0, —h) when the
body is not present, calculatable from Eqn. (2). The hy-
drodynamic coefficients Cm and Cd can be extracted from
the force time history using Fourier analysis (Sarpkaya &
Isaacson, 1981). It can be shown that

_ 27 Cm UaT
Fdres ~— KC Cd’ B
where U, is the amplitude of U. For low KC, the inertia
term dominates and a reduction of Cm would result in
smaller wave forces.
Chaplin (1984b) provided an empirical estimate of the
inertia coefficient for orbital flow at low KC:

Cm=2-0.21KC?

Finc'rtia

KC = (16)

17

which is useful for comparison purposes. Cm attains a
value of 2.0 for inviscid linear flow.

For KC = 3, the inertia and drag coefficients extracted
from FSRVM, using a time window of 3.2T, are shown in
Fig. 2 as functions of time. The Cm values of the inviscid
run is about 2 as predicted by the linear theory. However,
Cm values of the viscous results are significantly reduced.
Although Cm in Fig. 2 is different from what Eqn. (16)
estimates, they agree with the experimental results in Arai
(1995), [Cmz,Cmy}=[1.2,1]. Compared with the inertia
coefficients, the drag coefficients are not as steady. Table 1
shows the comparison of experimental and FSRVM inertia
coefficients for KC =1 and 2. The agreement is also very
good for these two cases.

Figure 3 shows the blobs and streamlines around the
cylinder for ¢t/T = 10 to 10.75, 1/4-period apart. The
blobs appear to undergo a steady circular motion around
the cylinder, and there is no tendency for the blobs to move
towards the free surface. Note the resemblance between the
streamlines in Fig. 3 and those of a rotating cylinder in uni-
form flow. This is consistent with the existence of a steady
circulation as reported by Chaplin (1984a). Using a differ-
ent model, Chaplin (1993) has obtained similar streamlines
around the cylinder.
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Figure 2: Comparison of inertia coefficients for inviscid and
viscous cases, KC=3.

Cmg Cmy
Arai  Tkeda FSRVM | Arai Ikeda FSRVM
KC=1 - 1.75 1.65 - 1.75 1.58
KC=2 | 1.18 1.2 1.32 1.2 1.22 1.18

Table 1: Experimental and numerical Cm.

5 Extreme waves past a cylinder

In this section, the wave-generation algorithm of §2 is ap-
plied to create an extreme wave propagating over a cylin-
der. The design location of a plunging breaker is 12.5 m
from the wavemaker, where h = 150 cm. At the design
location, a square cylinder, with B = 10 c¢cm and corner
radius of 2 cm, is placed at d = 35 cm.

The displacement S(y=0, t) is shown in Fig. 4 with cen-
tral period T = 1.75 sec for the wavemaker motion and
wave group. Note the trend that the frequency of the
motion is decreasing in time. Physically, this means that
shorter waves are first generated and will be caught up
by longer waves. This reinforcement of waves results in a
high-amplitude crest at ¢/T = 9.

Figures 5 and 6 show the forces on the cylinder in the
horizontal and vertical directions. These forces are normal-
ized:

Fu(t) Fy(t)

Vaevoh V0= Nodeh

For F., the effects of viscosity does not show up until
t/T > 8.3. The magnitudes of F; are about the same
until ¢/T = 8.5. For both runs, the maximum of F, occurs
when the breaker is right on top of the cylinder, t/T = 9.35.
However, Fy of the inviscig run is 70% greater tlxan that
of the viscous run when F is maximum. For F;, these
two records are very similar for 0 < t/T < 8 except for
6.4 < t/T < 7.2. When t/T > 8, there is a phase lag
between these two records. The peak at t/T = 9.1 of the
inviscid run occurs when the trough is passing over the
cylinder, while the peak occurs at /T = 9.2 for the vis-
cous run. Next, 13’,, of the inviscid run quickly turns nega-
tive, while F, of the viscous run is still positive when the
simulation ends.

Figure 7 shows the evolution of the free surface and its in-
teraction with the vortex blobs around the cylinder prior to
wave plunging. The crest appears at t/T = 9.15. The front
face of breaker continues to steepen, which becomes vertical
at t/T = 9.2. Next, a jet is formed at the crest and becom-
ing a plunging breaker at t/T = 9.35. As the free surface
starts to rise (t/T = 9) till it overturns (¢/T = 9.35), the
blobs system appear to undergo a counter-clockwise mo-
tion around the cylinder. Although the waves consist 72
frequency components, the behavior of the blobs are similar
to that shown in Fig. 3, where there is only one frequency
component. This may explain why the forces of the viscous
run are smaller than those of the inviscid run.

F@)= (18)

6 Conclusions

A numerical wave tank is presented to study both regular
and extreme waves passing over submerged cylinders. A
wave-generation algorithm is developed to produce extreme
waves at specific locations and time in a wave tank. It
is combined with the FSRVM so that the Navier Stokes
equations are solved for the flows around the cylinders.

For regular waves past a circular cylinder, results of nu-
merical simulations agree well with experimental data in
terms of the Cm values. The calculated flow patterns
around the cylinder also show the characteristics of an in-
duced circulation. A case of extreme waves passing over a
square cylinder is presented to study the effects of viscos-
ity. Similar to the regular-wave case, it is observed that the
forces are smaller than those predicted by inviscid theory.
The blobs around the cylinder also have a behavior similar
to that in the regular-wave case, namely, the blobs follow
the fluid motion around the cylinder.

These initial results are encouraging for a successful nu-
merical wave tank development, which can be used to study
nonlinear wave-structure interaction of other geometry and
scenarios.
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Figure 3: Right: Blobs around the circular cylinder under

the waves. Left: Streamlines near the cylinder. From top
to bottom, t/T = 10, 10.25, 10.5, 10.75, KC = 3.
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Figure 4: Time history of the wavemaker displacement at
y=0.
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Figure 5: Comparison of forces in horizontal direction for

inviscid and viscous results.
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Figure 6: Comparison of forces in vertical direction for
inviscid and viscous results.
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Figure 7: Evolution of the free surface and blobs prior to

wave plunging.
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