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The Fourier-Kochin theory of steady and time-harmonic ship waves is based on two fun-
damental theoretical results. These important theoretical results are now summarized. One
result, given in Noblesse et al. (1997), is a boundary-integral representation of steady and
time-harmonic free-surface potential flows with forward speed. This new boundary-integral rep-
resentation defines the velocity field Vi in a potential flow ezplicitly in terms of the velocity
distribution (u,v,w) at a boundary surface . Thus, the new flow representation does not
involve the potential ¢ at ¥ — unlike the classical Green identity which expresses ¢ within a
flow domain in terms of boundary values of the potential ¢ and its normal derivative 0p/on —
and defines the velocity field Vi directly, instead of via numerical differentiation of ¢. The new
flow representation can be used to extend a given nearfield flow (determined using any nearfield
flow solver) into the far field, and to couple a viscous nearfield flow — for which a velocity
potential cannot be defined — and a farfield linear potential-flow representation.

Another result, given in Noblesse et al. (1999a), is a new mathematical representation of
steady and time-harmonic free-surface flows with forward speed generated by arbitrary distri-
butions of singularities (e.g., sources and dipoles) over (flat or curved) hull-panels or waterline-
segments. Such flows are called super Green functions because of the similarity and difference
with ordinary Green functions, which are associated with a point source instead of a distribution
of singularities. The mathematical representation of super Green functions given in Noblesse et
al. (1999a) is valid for a broad class of waves in generic dispersive media. This representation of
generic super Green functions defines the velocity field @ as the sum of a simple-singularity com-
ponent @ given by distributions of simple Rankine singularities, and a free-surface component
@¥ given by a double Fourier superposition of elementary waves. The Fourier representation
of free-surface effects @ can be further decomposed into a wave component @V and a local
component @ L. Thus, the velocity field @ can be expressed in terms of the flow decomposition

Z=a%+al+gs (1)

This representation of generic super Green functions provides a useful formal decomposition of
nearfield free-surface flows (and other dispersive waves) into nonoscillatory local components;
which decay rapidly and are significant only in the near field, and a wave component which fully
accounts for the waves in the near field (as well as in the far field where the local components are
negligible). The expression for the wave component %, given by single Fourier integrals along
the curves (called dispersion curves) defined by the dispersion relation, is especially simple and
is well suited for accurate and efficient numerical evaluation.

The Fourier representation of the wave component in the mathematical representation of
generic super Green functions and the boundary-integral flow representation given in Noblesse
et al. (1997) are used here to determine the farfield steady ship waves generated by a prescribed
velocity distribution at a boundary surface, and to extend nonlinear nearfield steady ship waves
into the far field. '

For the purpose of verifying the Fourier-Kochin representation of farfield steady ship waves,
the linear free-surface potential flow due to a submerged point source of unit strength, i.e. 2 Green
function, is considered in Noblesse et al. (1999b). Briefly, the disturbance velocity generated by
the point source is evaluated at a boundary surface ¥ that encloses the source. This boundary
velocity distribution is then extended outside ¥ using the Fourier-Kochin flow representation.
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The outer flow fields — outside ¥ — determined directly, by using the expressions for the
gradient of the Green function summarized in Ponizy et al. (1994), and reconstructed via the
Fourier-Kochin representation are identical as expected.

The Fourier-Kochin representation of farfield steady ship waves can be used to extend non-
linear nearfield waves — predicted by any nearfield flow calculation method — into the far field.
An illustrative application to the Wigley hull is presented here. The Wigley hull is defined by
y=+b(1—422)[1~(2/d)?] with b = 0.05 and d = 0.0625. The nearfield flow is evaluated
at a boundary surface ¥ defined by z%/a?+ y®/b®+ 28/c8 = 1 with a = 0.6,b = 0.055,¢ = 0.1.
The nearfield flow in this example is determined using the fully nonlinear calculation method
— based on the Euler flow equations — of Yang and Léhner (1998).

The solution domains in the Fourier-Kochin flow representation and the nonlinear nearfield
flow calculation method are respectively bounded by the mean free-surface plane z = 0 and the
actual free surface z = e, where e stands for the computed free-surface elevation. The nearfield
flow computed at the Euler matching boundary surface (with z < e) is therefore mapped onto
the Fourier-Kochin boundary surface (with z < 0) required for the farfield flow extension. A
continuous flow mapping based on linear interpolation is used here. The disturbance velocity
distribution, predicted by the Euler nearfield flow solver and used in the Fourier-Kochin flow
extension, at the previously-defined matching boundary surface is shown in Fig. 1 for F'=0.316.

The nonlinear Euler nearfield wave patterns and their linear Fourier-Kochin farfield extensions
are shown in Fig. 2 for F = 0.25,0.316, and 0.408. The nearfield and farfield wave patterns
appear to be in fairly good agreement, especially in view of the limitations inherent to both
the farfield and the nearfield flows. In particular, the simple-singularity component @° and the
local component %% in the flow decomposition (1) are ignored in the present implementation of
the Fourier-Kochin flow representation. In addition, numerical damping attenuates the nearfield
waves relatively quickly.

The nearfield drag predicted by the nonlinear Euler nearfield flow solver (via integration of the
hull pressure) and the farfield drag obtained in the Fourier-Kochin extension (via the Havelock
formula for the wave energy radiated by the farfield waves) are listed below, together with the
corresponding experimental values :

F Near  Far Exp
0.250 0.97 0.90 0.82
0.316 1.58 1.55 1.525
0.408 2.33 2.27 2.31

These theoretical and experimental values of the wave drag coefficient (multiplied by 1000) are
in relatively fair agreement.
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Fig.1 - Velocity distribution on matching boundary surface (Wigley hull, F=0.316)"
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Fig.2 - Wave patterns generated by the Wigley hull
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