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Environmental concern has led to requirements about double bottoms and skin in new tankers. It is desirable
to save steel, and this has led to wide oil tanks that can be smooth inside. The most violent fluid motions inside
the tank occur in the vicinity of the highest natural period of the fluid motion. When the tank is smooth, viscous
effects are not important and potential flow theory can be used. Nonlinear free surface effects are significant.

Experiments have been carried out with forced harmonic sway oscillations of a rectangular smooth tank.
The oscillation frequencies are close to the lowest natural frequency of the fluid motion inside the tank. The
results show a clear beating effect that does not die out. A frequency analysis shows the presence of both
the lowest natural frequency and the forced oscillation frequency. This implies that a steady-state solution as
presented by Faltinsen [1] and Solaas and Faltinsen [2] cannot be used. Nonlinear effects are clearly present in
the experimental results. A theoretical solution is derived to explain the experimental findings. The response
is assumed to be O(e), where the small parameter ¢ characterizes the order of magnitude of the forced sway
amplitude relative to the breadth of the tank. A second-order solution in terms of e is derived. This is not valid
at resonance. It then seems necessary to assume that the response is of lower order than the excitation. The
steady-state solution in [1] and [2] assumes the response to be O(¢*/?). The fluid is assumed incompressible and
the flow two-dimensional and irrotational so that there exists a velocity potential &7 satisfying the 2-D Laplace
equation in the fluid domain. The rectangular tank is oscillating harmonically in sway. The coordinate system
is shown in Fig. 1. The tank position relative to equilibrium is 7 = €gsin(wt). The first order potential &,
satisfies the linearized free surface condition and the body boundary conditions on the side walls and the tank
bottom. The transient is kept due to a very small damping. The level of damping can be estimated by the use
of formulas given in Keulegan [3]. For the tank dimensions used in the experiments it will be less than 0.3%
of the critical damping for a linear standing wave at the highest natural period. This means the amplitude is
halved after ~ 100 oscillation cycles. Since potential theory is used, the damping is zero. The initial conditions
®; = 0 and 09,/0t = 0 on the mean free surface are used. The first order potential is written as &; = ¢, + ¢,
where ¢, = Az cos(wt) is associated with the forced oscillation. The expression for ¢, is
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and the bottom condition Qﬁ =0 on z = —h. Further the second order part of the free surface elevation has
to satisfy [* (pdz =0. Here
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A possible solution for the second order potential is
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Only the dominant term of the series solution for ®; is used in Eqs. 4 and 5 when finding ®,. By substituting
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the expressions for the coefficients Pi and B¢ are found as
P ; AD? cosh[%’—] 1 (=1)"(1 +4n?) w(2aH"tanh[Z2] — mg)
" a cosh[2Zh zh] [2Z2 tanh[2ZR] — (F%)2) \ (1 + 2n)2(1 — 2n)? gr
(=pr+ i —(F)? + 72 tanh(Z2]
+ @2n-1)(2n+1) 2P+ w
» EiFiT cosh®[22] (3mg — 20G tanh(ZL) — 2mgtanh?(Zh))
+ 3 === M i=1.-.--4 (12)
16ga® cosh[Z}] —(Fi)2 + 9a— tanh[%2]
where J* =1for n =1 and J* =0 for n > 1. Further
. AD‘w cosh[ AD? wh
B = i —_— -
~2gma F‘)ﬁ ——22-(2aH tanh[ ] wg) — oD cosh[ ]
AD? gr wh
+ EY COSh[-z—(;](l - m ta.nh[ia-])
Ei 1 2
- Wﬂ' cosh? [ ](1rg + 2aG tanh(—) + 2mwgtanh (—)) 1=1,2,3 (13)
B* = -————Eii-——-ﬂ coshz[ ](7rg + 2aG* tanh(——) + 2mg tanhz(--—)) (19)
16ga2(F*)

The B® coefficient contains an additional term —A2%/(4w?). The solution has been verified by checking that &
satisfies the boundary conditions. The presented solution satisfies ®; = 0 for ¢ = 0 while (; is initially non-zero.
A more general solution for ®; can be obtained by adding solutions that satisfy the homogeneous free surface
condition and body boundary conditions.

Fig. 2 shows a cross-section of the tank used in the experiments. The tank was forced to oscillate in the
horizontal direction in the cross-sectional plane. The length of the tank was 0.20 m, and as long as no plunging
wave breaking occurred, the flow was close to two-dimensional even for long time simulations. The excitation
was sinusoidal in time after an initial phase. This initial phase lasted for approximately two oscillation periods.
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The low damping in the tank made it inconvenient to wait for the motion from the last simulation to die out
totally before a new run was started. Measurements of the free surface at the positions shown in Fig. 2 were
made, and pictures were taken at registered time instants. The sampled time series are 50 seconds long, but
video recordings of longer simulations, as long as 5 minutes, showed that the pronounced beating was still
present and steady state oscillations with the forced oscillation period was not achieved. This shows that the
damping of the fluid motion is even lower than Keulegan found. One reason may be scale effects. Keulegan
assumed laminar flow and used smaller models than us. The Reynolds number associated with the boundary
layer flow in our experiments suggests turbulent flow.

As a general comment to the experiments, we note the obvious nonlinearity present in the free surface
elevation; the increase in crest height and decrease in wave trough relative to a sinusoidal standing wave. Figs.
3 and 4 show the measured and calculated free surface elevation at wave probe FS3 (see Fig. 2) for h = 0.5m,
forced oscillation period T' = 1.4s and € = 0.047m. Fig. 5 shows the position of the tank during the first
20 seconds of this simulation. ¢ = 0 corresponds to the same time instant in Figs. 3 and 5. The excitation
of the tank started at ¢ = 7.5s. The first natural period for this situation is To = 1.75s. Fig. 3 shows that
the free surface is initially in motion. This gives different initial conditions for the simulation (Fig. 4) and the
experiment. Also the excitation with an initial phase of an increasing amplitude will lead to differences in the
response. The comparison between the measured and calculated free surface elevation at FS3 shown in Fig.
6 is done for a time window after a few initial oscillations. The calculated values are shifted in time so that
the zero-crossings of the fast oscillating part and slowly varying envelope match. The 2. order solution gives a
better agreement for both the wave trough and wave crest than the 1. order solution. The influence of initial
conditions and non-harmonic excitation will be investigated systematically. We should note that the oscillation
amplitude of the free surface is clearly larger than the excitation amplitude.

The free surface profile found from the experiments is compared in Fig. 7 with the 1. order and 2. order
approximations and with calculations based on the combined numerical and analytical steady-state solution
of Solaas and Faltinsen [2]. Here h = 0.5m, T = 2.0s and €y = 0.051m. The time instant is just before the
maximum free surface elevation is reached at the right side wall. We see a tendency to wave breaking at the
wave crest. Only the dominant term in the series solution of &, is included in Eq. 6 when calculating ¢,. This
is consistent with keeping only this term when deriving ..

The second order solution agrees best with the experiments, but there are differences left to explain. We
note spilling wave breaking in the experiments. According to Penney and Price [4], a criterion for wave breaking
of a standing wave is a vertical downward acceleration larger than 1 g. In the simulation corresponding to Fig.
8, we get a maximum downward acceleration of 1.6 g. Higher order harmonics left out in the theory are more
important for acceleration than for displacement.

When the forced oscillation period is close to the highest natural period of the fluid motion inside the tank,
the water hits the tank ceiling even for very small excitation amplitudes. A more direct numerical method may
then be needed. Since local damage due to water impact on the tank ceiling is of concern and hydroelasticity
matters in this context, the chosen numerical method must include the effect of dynamic elastic vibrations
of the structure. Since long numerical simulations are needed to get proper statistical estimates of the tank
behavior in a seaway, it may be worthwhile to use an analytically based method when the water does not hit the
tank ceiling. It implies that the presented analytical solution should be generalized to satisfy arbitrary initial
conditions.
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Figure 1: Coordinate system
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Figure 2: Tank used in the experiments.
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Figure 3: The measured free surface elevation at wave
probe FS3 for A = 0.5m, T = 1.4s and ¢y = 0.047m.

FS al x=0.81m

Figure 4: The calculated free surface elevation at the
position of wave probe FS3 for h = 0.5m, T = 1.4s and
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Figure 5: The position of the tank during the measure-
ment presented in Fig. 3.
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Figure 6: A comparison between the measured and
calculated free surface. The conditions are as in Fig. 3.
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Figure 7: The free surface profile found from the ex-
periments compared with the 1. and 2. order approxi-
mations and with calculations based on the combined
numerical and analytical solution of Solaas and Faltin-
sen [2] h = 0.5m, T = 2.0s and ¢ = 0.051m.

Figure 8: Picture of the sloshing tank for h = 0.5m
and T = 2.0s.
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