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1 Introduction

In the present paper we examine the problem of Rayleigh-Bloch guided or surface waves supported
by infinite periodic arrays of vertical cylinders extending through the depth in a ocean of constant
depth. Rayleigh-Bloch surface waves are described by a localised oscillation contained within the
vicinity of the cylinders and decaying exponentially away from the array. In general, Rayleigh-Bloch
surface waves propagate energy along the array, though certain parameter choices can also give rise
to standing modes as we shall see.

The geometry consists of an infinite array of vertical cylinders which are arranged periodically in
the y-direction with period 2d. Within a typical strip of width 2d, the arrangement of any cylinders
is assumed for the time being to be arbitrary, although it will be shown later that it appears that
Rayleigh-Bloch surface waves are in general only supported by geometries which are symmetric about
a plane y = constant.

Rayleigh-Bloch surface waves are characterised by a dominant wavenumber, S, representing a
change in phase of e?#¢ in the field between corresponding points in adjacent strips. Simple arguments
show that when the wavenumber of motion, k, is less than the Rayleigh-Bloch wavenumber B, there
can be no radiation away from the cylinders to infinity and the wave is trapped. Associated with
the value k = @ is a frequency w, called the cut-off frequency and k < f therefore corresponds to
frequencies below the cut-off frequency. Note that there are examples of trapping modes above the
cut-off frequency (see Evans & Porter [1]), but here we prefer to concentrate on the regime below the
cut-off where no radiation to infinity is assured.

There are two aspects to the current work. The first is based on a single periodic row of cylin-
ders having arbitrary cross-section and in the second part we consider the possibility Rayleigh-Bloch
modes in the presence of multiple periodic rows of circular cross-section. The first of these was dis-
cussed in some detail at last years Workshop (Porter & Evans [2]) and will shortly be published in
Porter & Evans [3]. However, in trying to explain the presence of near-trapping by a finite array of
cylinders using the results from a Rayleigh-Bloch approach it was noted that our figures calculated for
the near-trapped mode wavenumber were identical to those found by Utsunomiya & Eatock-Taylor
[4] who had computed the trapped modes in a uniform width channel having either Neumann or
Dirichlet conditions imposed upon them and spanned by an arbitrary number of cylinders. This is
no coincidence, and we explain in §4 how the Rayleigh-Bloch approach applied to a single cylinder
can be used to generate the wavenumbers and corresponding solutions for the Neumann and Dirichlet
trapped modes about any number of cylinders spanning a channel by choosing appropriate values of
the Rayleigh-Bloch wavenumber 8. This mechanism also allows one simply to count and categorise
the number and type of trapped modes in a given situation.

Whereas a Green function method must be applied to the case of cylinders with arbitrary cross-
section to yield a first-kind integral equation for the unknown potential, described briefly in §3, in §5
we examine the case of multiple periodic rows of cylinders having circular cross-section. This allows an
extension of Evans & Porter [5] who considered trapped modes about multiple cylinders lying on the
centre of a Neumann or Dirichlet channel to Rayleigh-Bloch waves using a combination of multipole
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methods and Graf’s addition theorem for Bessel functions. On applying these techniques, the Rayleigh-
Bloch solutions turn out to correspond to the solution to an infinite homogeneous linear system of
equations. Although algebraically quite complicated, there are no particular difficulties in computing
the approximate solutions of the truncated system which converge very rapidly. Significantly, as long
as the cylinders are placed symmetrically such that their axes lie in the same plane y = constant, the
system of equations turn out to be real and the corresponding determinant is therefore also real. Since
we are seeking real values of wavenumber k¥ < § for a given § for which the determinant vanishes,
the realness of the determinant is a desirable property to have. As in the previous treatment of a
single row of arbitrary cylinders, the trapped modes about an array of M x N circular cylinders
occupying a Neumann or Dirichlet channel can be recovered from the Rayleigh-Bloch solutions for
N rows of cylinders by choosing the appropriate values of 4. These results may have an impact on
proposed designs for offshore airports supported by large rectangular arrays of vertical columns as well
as in other areas, such as the design of heat exchangers consisting of tube bundles arranged within a
waveguide.

2 Rayleigh-Bloch formulation

Consider an infinite periodic linear array of cylinders each of arbitrary cross section, having boundary
0D, and uniform throughout the depth. The generators of the cylinders are aligned with the depth
coordinate, z, and positioned at (z,y) = (0,2jd), j = 0,+£1,%2,.... Linearised potential theory states
that there exists a velocity potential ®(z,y, z,t) = Re{¢(z, y) cosh k(z— H)e'“!} where H is the depth,
the motion is assumed harmonic in time ¢ with angular frequency w and the wavenumber k is related to
w and gravity, g, by the dispersion relation w?/g = k tanh kH. The two-dimensional complex velocity
potential now satisfies the Helmholtz equation,

¢.tx + ¢yy + k2¢ =0

everywhere in the field apart from on the boundaries of the cylinders where
¢n = 07

and n denotes the normal derivative with respect to the cylinder surface. Because the geometry has
periodicity of 2d in the y-direction, we may relate the potential through

d(z,y + 2jd) = eP2¥g(z,y), —o0<j<oo 1)

which expresses simply that there is a change in phase of /2 from the field point at y to the
field point at y + 2d in the adjacent strip. Thus the total field can be obtained by referring to
a single strip of width 2d containing the cylinder. We therefore restrict our attention to the strip
S) € {—o0 < z < 00, |y| < d} and impose appropriate periodicity conditions on the lines y = +d of

$(z,d) = €PMg(z,~d),  dy(z,d) = ¢y (z,~d), )
with (1) providing the extension to all (z,y).

3 A single periodic row of arbitrary cross-section cylinders

In the case of a single row of cylinders having arbitrary cross section 9D, we take a Helmholtz Green
function, G, for periodic domains (see, for example, Linton [6]) and use it in conjunction with ¢ in
Greens Identity applied to the strip S; to yield the integral equation

8G(plg) , _ [ 3¢p), pedD, 3)
o ??) dsq_{ ¢(®), pgaD. (

Oong
where, here, p and g are labels for the points (z,y) and (£,7) respectively and n,, s, represent
normal derivatives and arclengths. This integral equation can be solved numerically by, for example
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discretisation and collocation as described in Porter & Evans (1999) resulting in a discrete complex
system of equations to be satisfied. It can be shown that there are two circumstances under which the
corresponding complex determinant can be made real: if the cylinder (and hence 8D) is symmetric
about a plane of y = constant; or if the Green function itself is real which happens for the particular
value of B = 7/2d. Some examples of such results will be presented.

4 Construction of trapped modes about M symmetric cylinders
spanning.a channel

We assume that each cylinder cross-section, 8D is symmetric. First we redefine the location of the
origin, and place it for convenience to coincide with a line of geometric symmetry between bisecting
two adjacent cylinders in the infinite array. Then y = 2Md is a corresponding line of Symmetry
bisecting the Mth and (M + 1)th cylinders and the strip Sas of width 2Md contains M cylinders. It
can be shown using either physical arguments, or directly from (3) assuming symmetry that

$(z,y) = e 5%G(z,~y), a€cR
Let us consider the M + 1 particular values of 8 given by
Bd=nn/2M, n=1,.M;2M @
giving rise to M + 1 distinct values of kd(8d) which, used in (1), show that
#(z,y + 2Md) = (—-1)"¢(z,y)
dy(z,y + 2Md) = (—1)"¢y(z,y)

such that odd (even) values of n correspond to half-periodic (periodic) potentials in each strip Sys. We
may, without loss of generality, incorporate an arbitrary phase into the potential ¢. Thus, we consider
the potential

}, n=1,...,M;2M

x(z,y) = €°¢(z,y)  suchthat  x(z,9) =X(z,~y). .
Now since x(z,y) represents Rayleigh-Bloch surface wave solution, then its symmetric and antisym-

metric parts, decomposed about the line of geometric symmetry, also satisfy all the conditions of the
problem. We can therefore consider the following two potentials

XN(z’ y) = Rg{X(za y)}a XD(za y) = Im{X(xa y)}

such that
| XN (zy) =xN(z,—y), and  xP(z,y) = —xP(z,—y).

and the superscripts N and D denote modes satisfying Neumann and Dirichlet conditions respectively
on ¥y = 0 and y = 2Md. Note that these two potential are purely real, a property which is typical of
trapped modes in channels. The particular values of fd = -%1r and B = = chosen by taking n = M and
2M in (4) are easily shown to correspond to the Neumann (x") and Dirichlet (xP) trapped modes
respectively about a single cylinder in a channel, the solution in the strip S)s being constructed by
‘gluing’ together M such channels. Note that there is no non-trivial x? (x¥) solution for fd = %=
(pi). For the remaining M — 1 values of d represented in (4), both solutions xV, xP are non-trivial
and therefore give rise to Neumann and Dirichlet modes for the same value of kd. Thus, in general,
one can state that for M cylinder spanning a channel, there are at least M Neumann trapped modes
and at most M Dirichlet trapped modes.

5 Multiple periodic rows of circular cylinders

Combining the techniques of multipole potentials and Graf’s addition theorem allows one to consider
the case of multiple periodically-arranged infinite arrays of cylinders. As described in §2, we reduce
the infinite array to the strip S1, now containing N cylinders of radius a; centred at (z,y) = (z:,0),
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¢ =1,..., N. The basic building blocks are the multipole potentials n(r;,6;) n = 0,1,..., singular at
r; = 0 where r? = (z — z;)2 + 42, ; = tan}(y/z — z;), and satisfying the periodicity conditions (2)
on y = *d. Such multipole potentials are derived in Linton & Evans [7]. Thus we write the potential

as a sum over all cylinders of the Fourier-type sum of all multipole potentials:
N o

$(zy) =D alhn(r;,6;).

Jj=1n=0

Provided k£ < B, the solution is real and decays to zero as |z — co. The remaining condition to be
satisfied is that of no-flow through the surface of the N cylinders. This requires that the potential to be
expressed in terms of the local polar coordinates of cylinder %, say, and for this Graf’s addition theorem
is used since the multipole themselves are expressed as an expansion in terms of Bessel functions. The
result of applying the cylinder no-flow condition to the N cylinders is an infinite system of real
equations, the vanishing of whose corresponding determinant provides the Rayleigh-Bloch solution
kd(Bd).

As in the previous section the trapped modes about a rectangular array of M x N cylinders can be
recovered from the Rayleigh-Bloch solution along IV periodic rows of cylinders by choosing the M + 1
values of Bd given in (4). As an example of such modes the two figures below illustrate the free surface
amplitudes of the Neumann trapped modes about an array of 4 x 4 identical cylinders in a channel
(with gd = %1:). The left figure is the first mode symmetric about z = 0 and the figure on the right
is the first antisymmetric mode. Further such results will be presented at the Workshop.
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