FFT Acceleration of the Rectangular Dock Problem *
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The Continuous Problem

The hydrodynamic behavior of offshore structures large enough to be used for floating airports or
military bases is difficult to model computationally because of their size relative to typical ocean
wave lengths. Boundary-element methods (BEM) are usually applied to these problems, but their
computational cost (cpu time expended and memory allocated) is high. Conventional BEM rely on the
set-up and solution of dense linear systems so their cost is at least order N2, in which N is the number
of unknowns. The techniques used to mitigate the analysis cost of these structures have been:

o high-order BEM, which is more efficient than low-order [4];
o low-order BEM with ad hoc assumptions to reduce the number of unknowns (see [2]);

o hierarchical clustering of interactions between similar parts of the structure with BEM to compute
the representative interactions (see [2]).

The first of these approaches retains the order-N? cost of conventional BEM, but can achieve higher
accuracy for a given N than a low-order BEM. The latter two of these approaches can reduce the cost
to less than order N2, but at the expense of either provable accuracy or general application.

The key to solving these dense matrix problems with reduced computational cost is to approximate
them with sparse systems, thereby reducing both the set up and the solution cost. An algorithm for
solving BEM formulations that effectively sparsifies the linear system while providing a prior: error
bounds is the precorrected-FFT method [5]. In this approach, the interaction of nearby elements is
computed directly, and that of the remainder is approximated by efficient calculations on a uniform
grid. The efficiency of the grid-based interaction relies on the fact it may be cast as a circulant matrix-
vector product. A circulant matrix represents convolution and so circulant-matrix computations may
be done with reduced cost by the FFT.

‘We consider a structure for a floating airport that consists of multiple rectangular barges such that
the entire structure has length and beam considerably greater than the draft and the spacing between
adjacent barges is negligible. This structure may be analyzed hydrodynamically or hydroelasticly as an
infinitely thin plate on the free surface (the “dock” problem). This particular floating-airport structure
leads naturally to the circulant form when analyzed by a BEM and may be solved extremely efficiently
by a method that exploits the low cost of the FFT. While admittedly a special case, the presentation
of this solution demonstrates the ideas behind the more general approach of precorrected-FFT.

The problem is linearized so that the total potential is

&(z) = <I>I(z)+<I>s(x)+Z<I>j(x), (1)

in which ®;(z) is an incident wave potential, ®s(z) is the scattering potential, and ®;(z) are the
radiation potentials for rigid and non-rigid modes. These potentials all satisfy similar boundary-value
and integral formulations, so we consider, for example, the diffraction problem (for ®s(z) z:z €
R3,z3 < 0) for a plate in the plane 23 = 0 of length L and width Bin a fluid of depth H. Let Sis
denote the plate surface —% <z < %, —% <z2< %, and z3 = 0. We will solve this problem in the
frequency domain, that is, we will work with the complex amplitude ¢s(z) defined in

Bs(z,t) = Re{ds(z)e™") @)

for a particular radian frequency w.
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The scattering potential ¢s(z) satisfies the Laplace equation

Vis(z) =0, (3)

and the combined (kinematic and dynamic) boundary conditions on z3 = 0
“Kés(e)+ mbs®) = o) veSu,  —Kés(a)+ Losr)=0 o gs
3 20 M, s 5,%5(2) =0 z ¢Sp, 4)

in which K is the infinite-depth wave number corresponding to the frequency w, i.e. K = w2 /9. A
radiation condition makes the problem well posed.

The problem may be recast as a second-kind Fredholm integral equation on the wetted plate surface
to be solved for the complex diffraction pressure directly [7]

K % r%
o)+ 57 [ s [ des G ) = ~paci(z)  z e, %)

in which G(§;z,w) is the frequency-domain, free-surface, Green function and ¢r(z,w) is the incident
wave elevation.

The Discrete Problem

For this case of a rectangular plate, if (5) is discretized by a structured mesh of N = N x N identical
rectangular elements, upon which the pressure is assumed to be constant, and the equation is enforced
at the element centroids, then the matrix of the resulting linear system is doubly-Toeplitz in form.
More precisely, in

Tp=¢( (6)

(T € CNXN;p,¢ € CV) there are N ? blocks in a Toeplitz pattern and these rank-Np blocks are
themselves of Toeplitz form.
A circulant matrix (or simply “circulant”) is a special Toeplitz form with the structure:

Ci Cn C2
Ca €1 ...
Cc = . (7
: I .. Cn
Cn 2 O

The important feature of a circulant is that it may be diagonalized by application of the discrete Fourier

transform matrix F,,, by
D =F,CF; 1

for C a circulant and D = diag(d;) [6]. Not surprisingly, because of the repetitive structure of C, the
elements of D can be calculated simply from the matrix-vector product

d=F,c (8)

in which ¢ is the first column of C. This may still appear to entail an unacceptable order-N2 compu-
tational cost, however the use of the FFT reduces it to order-N log N time and order-N storage.

The way to exploit circulants in a problem with Toeplitz structure is that any Toeplitz matrix
of rank N can be embedded in a contrived circulant matrix of rank 2N. Here, the doubly-Toeplitz
structure leads to a doubly-circulant matrix of rank 4N. We will show that it is a worthwhile strategy
to work with a linear system of size 4N instead of N, as long as the asymptotic cost is reduced from
N%to NlogN or N.

Consider solving (6) with a Krylov-subspace iterative method like GMRES. As we iterate to find
the solution within a certain tolerance ¢, forming the residual r¥ from the k*” trial vector p* requires

the matrix-vector product
¥ = ¢ - Tp". ©
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Provided that the system is sufficiently well conditioned, so that |rkmax| < € for kmay << N or even
kmax independent of N, then the solution has order-N? cost because of 9).

We can achieve |rfmax| < ¢ without forming T', and naturally without explicitly performing the N2
operations of T'p¥, by exploiting the property of circulants noted above. We do this in two distinct
ways: (1) we find a doubly-circulant approximation to 7', which we denote Cp € CVXN and use it as
a preconditioner, and (2) we embed T in a doubly-circulant matrix, which we denote Cp € C4NX4N
and use it to compute residuals instead of T'.

For preconditioners, there are a number of circulants that are reasonable approximations to T'. An
ad hoc choice would be to use the Np/2 central diagonals of the blocks, repeating them as necessary to
obtain circulant blocks and extend this idea to the block structure as well. This amounts to emphasizing
the half of the elements nearby to any evaluation point, while ignoring the half farther away. A more
rational choice is to derive a new set of matrix entries from the old by an algorithm that minimizes a
norm. It is straightforward to minimize the Frobenius norm [1]. In this case, no elements are ignored;
all are included in weighted sums of near and far influences. Given either of these approaches, instead
of working with (6), we solve for y in

TCp'y=¢, p=Cply. (10)
The algorithm (without details of GMRES, particularly the setting of y*) proceeds as follows:

for N = Ny x Np elements {
compute 4N entries of ¢y and N entries of ¢p /* load circulant columns */

}
set k = 0, ¢; initialize rf = ¢, y* /* prepare to iterate with an initial guess */
while |r¥| > € { /* iterate as long as tolerance is not met */
p*F = fit ™! ([fft(cp)]T it (yF)) /* use FFT to apply circulant preconditioner */
P* = P(p*) /* P an operator zero padding p* to nullify cp; ¢T */
¢k =fit™? ([ffe(cr))T1EL(D*)) /* apply influence matrix to k** pressure in Fourier space */

¢k = PY(CH) /* P~! extracts useful part of (¥, remaining entries ignored */
if (|r*] = |¢ — ¢¥| < €) {save p*; kmax = k; quit} /* if tolerance met, we’re done */
else {k = k + 1; choose y**'} /* otherwise set new trial vector and repeat */

Results and Discussion

The algorithm has been coded so that preconditioner effectiveness, algorithm accuracy, and computa-
tional cost may be examined. Figure 1 shows the effect of the two preconditioners as compared to no
preconditioning. For long waves, preconditioning is not very important, though both preconditioners
are better than none. However as the waves become shorter than approximately L/16, not only does
preconditioning become very important, but interestingly the norm-minimizing preconditioner is very
effective (nearly independent of )), while the ad hoc preconditioner is actually harmful.

The diffraction pressure for a finite-depth case is shown in Figure 2. These results were computed
with 16,384 elements and, through comparison with results using 65,536 elements, appear to be con-
verged to graphical accuracy at least. The computational cost required to obtain such results is shown
in Table 1. Again, the effectiveness of the norm-minimizing preconditioner is apparent in its very weak
dependence on N. Also, we can see that the cpu time expended is increasing slightly faster than N due
to the existence of both order-N and order-N log N operation requirements in the algorithm, and the
memory allocated reflects the strictly order-N storage requirement. If a conventional low-order BEM
code were applied to the 16,384-element case, the cost would be between 1 and 2 orders of magnitude
greater than with the present method, even if 2 planes of symmetry were exploited. However the more
general BEM approach probably could achieve a similar accuracy with fewer elements by using a graded
mesh.

The point of this specialized example is to demonstrate the computational efficiencies that can
be gained from structured decompositions. Given an arbitrary structure for analysis these efficiencies
may still be realized. The idea is that only an order-N subset of the computation of the residual is
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Figure 1: Iterations required (¢ = 0.0005) for var- Figure 2: Normalized diffraction pressure on an
ious preconditioning strategies for the diffraction L = 4000m by B = 1000m floating airport,
analysis of an L/B = 5 plate, in H/\p = 0.2 in 20m fluid depth and following 200m-length
fluid depth and following waves. waves. Compare with Figure 4 in [4].

done directly with the boundary elements. The remainder is done on a uniform grid to which the
element singularity strengths are projected and from which the potential is interpolated. This method
is applicable to integral equations with a variety of kernels, and is demonstrated in [3] for the frequency-
domain, free-surface Green function.

Ny | Np N Iterations | CPU Time (sec) | Memory Allocated (Mb)
64 | 16 | 1024 33 .6 1
128 | 32 | 4096 34 3.1 4
256 | 64 | 16,384 37 17.7 16
512 | 128 | 65,536 40 91.5 63

Table 1: Computational time per frequency and memory allocated (DEC alpha 433MHz, ¢ = 0.0005)
for the diffraction analysis of an L/B = 5 plate, in H/A = 0.2 fluid depth and following waves.
For the 16,384 element case, the estimated time and memory usage for a conventional N2-cost BEM
(exploiting 2 planes of symmetry) is 900 seconds and 340Mb.
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