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Introduction

Fluid flow simulation near offshore structures in waves has been studied many times. Most works were for
monochromatic or bichromatic waves. In the present study, multi-frequency wave is considered, aiming the prediction
of the multiple linear and quadratic transfer functions with a single run and finally the application to realistic ocean
spectrum. The method of solution is a Rankine Panel Method, which has been developed at MIT. In order to extract
the components of arbitrary frequencies, the Fourier transform was carried out using not FFT but an integral method.
The computation was concentrated on the diffraction problem and the linear and quadratic transfer functions were
. compared with other benchmark-test results. '

Boundary Value Problems

The linear and second-order diffraction problems are quite well known. The velocity potential of random or multi-
component incident wave can be written as
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where the subscript 1,2 means the order of problem. In the second-order wave, there are sum- and difference-frequency

components, being applied to numerical computation as an analytic form or being generated during the numerical
simulation of the second-order wave flow. The free-surface boundary conditions can be written as follows:
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where 5,, means the delta function which becomes unit when the second-order problem is considered, i.e. k=2.

Therefore, at a certain time, the linear solution should be known in order to solve the second-order problem. A zero-
flux condition must be imposed on the body surface and other rigid boundary. Furthermore, we need the radiation
condition for the uniqueness of solution.

' Numerical Method

The method of solution is the Rankine panel method, which has been developed by Sclavo\mbs(l988) for steady
forward-speed problem and Nakos(1993) for the unsteady ship motion, and in particular by Kim(1997) for the second-
order diffraction problem. Panels are flat, but the representation of the physical quantities is approximated using a B-
spline basis function, which takes the form as below:
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where (p) and (q) are the orders of B-spline function on two coordinates along panel surface. Time integration scheme
is a modified Euler method, so that the free-surface boundary conditions are written as follows:
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where Py, and Py, mean the forcing terms of equation (3). In addition, the velocity potential on solid boundary and

normal flux on free surface can be obtained from Green’s identity. The radiation condition is imposed using the
artificial damping zone, in which the kinematic free-surface boundary condition is modified.

Stability Issue

The same idea with Nakos(1993) and Kim(1997) can be extended to the stability analysis for an arbitrary order of B-
spline function. For a certain disturbance on the descretized free surface with constant-spacing panels, Ax and Ay,

the dispersion relation in the discrete domain can be written as follows:
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where At indicates time segment and S(z,v) is the function of the wave number ¥ and v, which is related with the
Fourier transformation of basis function and Rankine source. For the arbitrary orders of basis function defined in
equation (4), S(u,v) becomes
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when As=0(Ax,Ay)—> 0, and it
approaches the inverse of continuous 048
wave number. Therefore, equation (6)
recovers the continuous dispersion
relation as Az — 0. Figure 1 shows the
comparison of discrete and continuous
dispersion relations for different pand

q, i.e. the order of basis function. Here
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that the discrepancy for bi-quadratic and ! :}Bzz.o
bi-4™ order functions is not significant. A e e
condition for temporally neutral stability uAx/2% wAx/2%
can be derived as a simple form, Figure 1 Discrete and continuous dispersion relations
Bz 'SzAx . ®
z -
Figure 2 shows the contour plots of SAx /4 8% when the aspect - /_—_-: 5$§ A~
ratio of panel is unit and u = v . Computation will be stable when b o
|S|Ax/4p% <1. In this figure, the basis functions are the bi- , b & o /
quadratic and bi-3rd order functions, showing almost identical < 12 of  smble =T
borders. Therefore, we may conclude that the order of basis I 0 1
function higher than bi-quadratic doesn’t provide significant 3
improvement in the viewpoint of the consistency and stability of & o
numerical scheme. -
Fourier Transform B T D B S

. (u*+v*)*ax/2x
FFT is widely used in the Fourier transform of time signal.
However, it may be not suitable when the frequencies of interest are Fig.2 Contour of | §|Ax/48?

not equally spaced. In the present study, a Fourier-transformation
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program based on an integral concept was developed in order to extract the arbitrary frequency components, which a
user wants to select. The idea is simple. For a certain function, which is written as the sum of a constant and the series
of exponential function, the following integral is satisfied.
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Here the weight function is an exponential function with frequency, @,,. The integrals in right side are trivial and we

know the analytic solution, while the left integral must be obtained using numerical integration. When we apply N+1
frequencies, which are equal to the basis frequencies of f(f), a matrix equation for unknown C, can be assembled. In

the second-order problem, the sum- and difference-frequencies can be applied in equation (9). In the real numerical
computation, there are some unexpected components, for example saw-tooth wave or slowly-decaying transient mode.
Therefore, in order to minimize the numerical error, some dummy frequencies are recommended to be included. These
dummy frequencies must cover a certain bandwidth, minimizing an aliasing error.

Numerical Computation & Results

The computation was carried out for single cylinders, being bottom-mounted and truncated. Polar grid system with
proper stretching near the body was applied. In the simulation of multi-component wave, the solution grid must be fine
enough to resolve the shortest
wave and the computational
domain should be large " N\j
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FUpgala,

order problem, the former ok .

comes from the sum- . ;
- frequency components, while ! -
the latter from the difference-

0
frequency. Fig. 3 shows the P [second ozder]
time signals of the linear and 1
second-order surge force on a °
bottom-mounted circular -10 ;
cylinder. Four components 2
are mixed in the Ilinear 5 o £ tg/a)™®

signal, so that the 16(4X4)

sum-frequency and 16(4X4) Figure 3 The linear and 2™ order surge forces on a bottom-mounted cylinder
difference-frequency compon- radius(a)/depth(d)=0.4, ka=1.0,1.2,1.4,1.6

ents are in the second-order
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Figure 4 Grid dependence on QTF matrices: the same case with Fig. 3

signal. Quadratic transfer functions (QTFs) can be extracted from the second-order signal, using the Fourier transform
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described above. Fig.4 shows QTF matrices obtained from the time signals with different grid numbers, and the grid
dependency in this case is not significant in this case.

The same computational
method can be extended to
random ocean specira. Fig. 5
shows the instantaneous linear
and second-order wave profiles
near a truncated circular
cylinder with 10m radius. In
this case, ITTC spectrum of
Sea State 5 was adopted. The
significant wave height is 3.25
m and the modal wave period
is 9.7 sec. In the second-order
profile, local waves are
significant near the body. Fig. v
6 shows the force signals in Figure 5 Instantaneous wave profile near a truncated cylinder
random wave, and Sea State 6 ITTC spectrum, sea state 5, d/a=4, Elevations are magnified.
was applied. In Sea State 6, the
significant wave height is 5.0m and the modal wave period is 12.4m. The second-order surge force is not significant
compared with the linear force, while the second-order heave force cannot be ignored. Microseim effect may be a
major source of the second-order heave force. The analysis of the second-order force is not simple since a lot of sum-
and difference-frequency components are mixed. The Fourier transform described above is not enough in this case.
Therefore, signal-processing techniques will be very useful to analyze the nonlinear statistical characteristics of the
second-order random signal.

Surge force !
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Figure 6 The linear and 2™ order forces on the cylinder in Figure 5, ITTC spectrum, Sea State 6
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