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1 Introduction

Panel methods have been extensively used for analyzing potential flows in aerodynamic and hy-
drodynamic applications. Based on surface description and unknown function representation, we can
outline two approaches in panel methods: low-order and higher-order. The low-order (first-order)
panel method uses planar triangular and quadrilateral panels having constant values of singularity
strength, e.g. Hess & Smith method. This method has been successful for the vast majority of poten-
tial flows. In attempting to achieve equivalent accuracy for smaller number of panels, higher-order
panel methods have been proposed. For example, Hess (1979) used paraboloidal panels with linearly
varying source and vorticity density. A different kind of higher-order method employs quadratic or
cubic Lagrangian interpolation functions to represent panel geometry and behavior of potential and
its normal derivative over each panel. The higher-order methods are known to be remarkably accu-
rate and efficient compared to the low-order method but retain some drawbacks: (1) in Hess method,
the use of cubic panel shape with quadratic source density seems not to be feasible due to the great
increase of complexity, (2) the higher-order method using Lagrangian interpolation functions gives
the discontinuous normal vector and spatial derivatives of the potential across the panel boundaries.
To remedy these drawbacks, we introduce a higher-order panel method using B-splines.

B-spline curves and surfaces have become a standard for geometry description in computer aided
design systems. Panel methods using B-spline basis functions, however, have not been thoroughly
investigated in fluid problems. Recently, the applications in two-dimensional problems (Hsin et al.,
1993) and three-dimensional problems (Ushatov et al., 1994; Maniar, 1995) have been reported. They
used the non-rational B-splines for surface representation. Unlike the previous B-spline panel meth-
ods, the proposed method in this work features the use of non-uniform rational B-spline (NURBS)
surfaces to accommodate more precise geometric representation of given bodies. As a result, the
method provides the accurate representation of geometry of bodies, especially bodies with conics;
thus gives significant improvements in solving a boundary integral equation.

2 B-spline Panel Method

With assumptions that the fluid is inviscid and incompressible, and that the fluid motion is
irrotational, there exists a velocity potential ¢ which satisfies the Laplace equation. The Laplace
equation can be transformed into an integral equation by Green’s theorem in the second form:
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where C(p) is a solid angle at a point p(z,y,2); S represents boundary surface; % is the normal
derivative with respect to a point ¢(¢,7,{) on S. In an unbounded fluid problem, the harmonic
function G is expressed as 1/R = 1/4/(z — €)2 + (y — n)®> + (2 — ()2
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To solve the boundary integral equation (1), the geometry of a body is modeled by the NURBS
surface of degree p in u and degree ¢ in v:
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where w;; is the weight; P;; is the net of control points; BP(u) and B;-’ (v) are the B-spline basis
functions defined on the knot vectors in u and v parametric directions, respectively; and N and M
are the number of control points in the u and v directions, respectively. Further, ¢ and 59—7?- are
assumed as !
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where a;; and b;; are nets of control points for the potential and its normal derivative over the body
surface, respectively; B¥(u) and B}(v) are the B-spline basis functions of degree k in u and degree !
in v; and n and m are number of control points in the u and v directions, respectively.

To obtain the numerical solution, the body surface is discretized into number of panels. The
parametric coordinates u and v of the knots are divided into n and m points, respectively, resulting
in (n — 1) x (m — 1) rectangular segments in the parametric domain. Each segment corresponds to
the surface panel in the physical domain. Then the collocation at the corner points of each panel
results in the linear system of equations with n x m unknowns. The control net a;; for the potential
or b;; for the normal derivative of the potential are the unknowns to be determined, depending on
the type of given boundary conditions. The influence coefficients by source and normal dipole terms
are evaluated using the PART (Projection and Angular & Radial Transformation) method for the
near field, Telles (1987) method for the intermediate field, and 6 x 6 Gauss quadrature integration
for the far field. Hayami and Matsumoto (1994) suggested this strategy for the choice of the efficient
numerical method to integrate influence functions. The PART method noticeably reduces the number
of integration points for singular integrals compared to the polar coordinate transformation method
which has been commonly used. The linear system of equations is solved using the LU decomposition
method.

3 Numerical Results

To perform numerical computations, we consider a uniform flow past a sphere in an unbounded
fluid. For simplicity, the radius of the sphere is taken to be 1 and the onset flow is from the -
z-direction with its velocity U=1. The sphere is represented exactly by the bi-quadratic NURBS
surface with 45 (N = 9, M = 5) control points. The weights and non-uniform knot vectors can be
found in Rogers and Adams (1990). The surface is discretized into the a set of panels by equal spac-
ing in u and v parameters. Due to the flow symmetry, one-eighth of the sphere surface is modeled.

For the verification of the accuracy of the sphere defined by NURBS surface, the unit normal
vectors and surface area are investigated. As expected, the calculated unit normal vectors are exactly
equal to the analytical results. As shown in Figure 1, the NURBS technique is superior to other

77




methods for calculating the surface area.

In exterior Neumann problems, it is noted that the control points a;; for the potential are the
remaining unknowns in the linear system of equations because % is given by the body bound-
ary condition. The bi-linear, bi-quadratic, and bi-cubic B-splines with uniform knots are used
for the potential variation over the body surface. Figure 2 shows the RMS error, defined by

\/ 1" (B anatytic — (D) caleutated)?/(n x m), in the potential evaluated at the collocation points
while increasing the number of panels. It is seen that the RMS error can be greatly reduced as
the number of unknowns increases. Figure 3 and 4 show potential and pressure distributions along
the polar angle 6=0° (stagnation point) to 6=90° at the y=0 plane on the sphere surface, respectively.
The computed results are in excellent agreement with the analytical solutions. The absolute errors
in the drag force acting on the front half of the sphere are plotted in Figure 5. The analytic value is
C; = :1-9%;@: -0.0625, where p is the fluid density, S is the surface area, p is the pressure, and
ng is the z-component of the unit normal vector directed into the fluid region. The method using
the cubic potential spline shows a rapid decrease in error and good convergence with the increasing
number of panels. Overall, the method based on B-splines gives better results than Hess method.
Figure 6 shows the absolute errors in the added mass of the sphere translating in an unbounded fluid.
The analytic value is [ [ ¢n,dS = %" The bi-cubic potential spline appears to converge faster than
bi-linear and bi-quadratic ones. This observation is similar to the one obtained from Figure 5.

4 Concluding Remarks

A three-dimensional higher-order panel method using B-splines has been developed to solve a
boundary integral equation in potential flow problems. Specially, the NURBS technique was intro-
duced for exact geometric representation. The improvements for obtaining accurate solutions by
the proposed method have been demonstrated. The application of the method to free-surface flow
problems remains for future study.
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