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1. Introduction

The importance of the inclusion of nonlinear effects in the calculation of wave forces on offshore
structures is well known. The motivation for this arises primarily due to the need to calculate more
accurate wave force predictions than those provided by the linear scattering theory which is based on
the assumption of small wave amplitude. Fully nonlinear prediction on the wave force on a body is a
very difficult task. However, many researchers extended the linear theory to second-order, although
the second-order theory is also limited to small amplitude waves. But some nonlinear effects on a
body have been successfully predicted by a second-order analysis, which could not be predicted by the
linearised theory. The second-order theory for wave diffraction by a submerged cylinder in deep water
or in water of uniform finite depth has been investigated earlier in the literature by many researchers
( cf Ogilvie(1963), Vada(1997), Wu and Taylor(1990), McIver and Mclver(1990), Wu(1991,1993) and
others).

In the present paper we have studied second-order theory for water wave scattering by a thin vertical
barrier, which may be surface piercing or submerged in deep water. The second-order reflection and
transmission coefficients have been obtained analytically in terms of quantities obtainable explicitly on
the basis of linerearised theory. Numerical results for the second-order reflection coefficients against
the wave number for two configurations of the barrier are depicted graphically. It is observed that in
the low frequency range, the second-order efficet is significant.

2. Formulation of the problem :

Let a thin vertical barrier represented by = 0,y € L = L;(j = 1,2) be present in deep water,
where the y-axis is taken vertically downwards through the barrier and the origin lies on the mean
free surface, and L, = (0,a) for a surface piercing barrier and Lo = (b, 00) for a submerged barrier.
A uniform wave train is incident on the barrier travelling from the direction of the positive infinity
value of z. The motion in the water is assumed to be irrotational, so that it can be described by a
potential function ®(z,y,t). Let y = n(z,t) denote the free surface depression below the mean free
surface y = 0. Assuming the steepness parameter € to be small, & and 7 may be expanded as

&=+ +... ' )

and
n=em +em+... (2)

where the first-order potential function ®; gives rise to the linearised theory of water waves while

®, gives rise to second-order theory. ) '
Let the incident first-order wave have amplitude a and frequency o, so that ®¢(z,y, K,t) is

represented by
inc _ _z'ga inc —iot 3
@1 (x,y,K,t) = Re P ¢ (a:,y,K)e ( )

with ¢™¢(z,y, K) = e K¥-1K2 K = g2 /g, g being the gravity.
Then the first-order potential function ®,(z,y, K,t) can be expressed as

®y(z,y,K,t) = Re [—E%gqsl (z,, K)e-—ia't:l @

where ¢1(z,y, K) satisfies
V241 = 0 in the fluid region , (5)
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K¢1+a—¢1-=0 ony =0, (6)

oy
$1o =0onz =0,y €L, (7)
r/2V ¢, is bounded as r — 0, (8)
where 7 is the distance from a submerged edge of the barrier,
Vé —0 asy — oo, 9)
e Ky(e75% 4 R (K)e'K?) as 7 — oo,

¢1(-’L',y, K) ~ . (10)

Ty (K)e Kv—iKz as T — —00,

In the condition (10), R1(K) and T1(K) denote first-order reflection and transmission coefficients.
We may suppose that ¢, (z,y, K) is a known explicitly including R; (K) and T3 (K) for L = L;(j = 1,2)
( cf Dean(1945), Ursell (1947)).

The second-order potential function ®(x,y,t) can be expressed as ( see Mclver and McIver (1990))

B2(2,9,1) = B4(2,9) + ct + Re [a’ o (z,y)e™>] (1)

where @, ¢o are respectively the steady part and the double-frequency part of ®,(x,y,t), cis a constant
that only affects the position of the mean free surface. We are interested in ¢ only. It satisfies (5),
(8), (9) together with

4K¢2+%%g=f(x) ony=0 (12)
where
@)== [("’¢’1>2 K2} + 2450 "”] (#,0), (13)
and

iRy (K) + Rpe 4Ky H4Kz 55 2 — o0,

Toe~4Ky—4iKaz as T — —00.

As z — 00, the first term in the asymptotic relation (14) arises due to the interaction of the first-order
incident and reflected waves, while the second term represents a free outgoing wave with frequency
20. There is no contribution to the incident wave in deep water at second order. Again, as £ — —oo0,
the only term in the asymptotic relation (14) arises due to a free outgoing wave with frequency 2¢.
Ry and 7> are called the secon-order reflection and transmission coefficients. These can be determined
in terms of ¢.

3. Second-order reflection and transmission coefficients

Let ¥(z,vy) = ¢1(z,y,4K) be the first-order potential due to an incident wave field with frequency 20
propagating from the direction of positive infinity so that 1 (z,y) is known for L = L; and L,. We
use the Green’s integral theorem to the functions ¢2(z,y) and ¥(2,y) in the region bounded by

y=0-X<z<0",0t<z<X;z2=0*0<y<ay=Y, - X<z<X;z==+X,0<y <Y,
for the surface-piercing barrier problem and in the region bounded by
y=0,-X<z<X;z=xX,0<y<Y;y=Y, - X <2<07,0t <z <X;z2==0,b<y <Y,

for the submerged barrier problem.
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Now making X,Y — oo we obtain the following expression for the second-order reflection coefficient
Ry, given by

Ry = Jim_ [—z’ /_ " $1(2,0,4K)f (@)dz +iRy(K) { Ry(4K)e KX — ¢~4KX H- (15)

Again, an expression for the second-order transmission coefficient T is obtained by applying Green’s

integral theorem to x(z,y) = ¢1(—x,y,4K) and ¢2(z,y) in the same region mentioned above and
making X,Y — co we obtain

Ty = Jim [—’i /_ * é1(—x,0,4K) f(a:)dx+z'R1(K)T1(4K)e4iKXJ. (16)

These expressions for Ry and T» have been derived by McIver and McIver (1990) for any submerged
body.The integrands of the integrals in the relations (15) and (16) do not decay as £ — oo. Mclver
and Mclver (1990) suggested that the integrals must be combined with other non-zero terms in the
expression before the limit is taken. A computable form of R; is thus given by

Ry = —iRi(K)T1(4K) — zf(;)o [$1(z, 0,4K) f (z) + ¢1(-=2,0, 4K)f(—z)

—4iK Ry (K) {e~457 1 By (4K) 4%+ } | da. (17)
and that for T5 is given by
Ty, = iRy(K)Ty(4K) —i [ [¢1(~2,0,4K)f (z) + ¢ (z, 0, 4K) f (—2) s

—4iK R, (KT} (4K)e4iK’”] da.

4. Numerical results :

The expressions for Ry anf T are given by (17) and (18). |Ry| and |T5| are evaluated numerically
for a number of values of non-dimensional parameters Ka ( for partially immersed barrier) and Kb (
for submerged barrier). |Rp| and |T3|, for partially immersed barrier are depicted graphically against
the wave number Ka, in figs 1 and 2 respectively. It is observed that for very small and very large
wave numbers |Ry| and |T3| become assymptotically small. This shows that the second-order effect is
neglegible for very small and very large wave number while in the intermediate range it is significant
in the case of the surface-piercing barrier.

Again, in figs. 3 and 4., for submerged barrier, |Rz| and |T,| are depicted against the wave number
Kb. Here also similar behaviour for large wave number is observed. However, while for partially
immersed barrier configuration both |Rp| and |T5| tend to zero as Ka — 0, for submerged barrier
configuration, both |Rz| and |T%| oscillate for small Kb. This may be attributed due to the interaction
between the free surface and the sharp edge of the submerged barrier.

Numerical computations of |Ry| and |T5| for the submerged plate occupying the position z = 0,a <
y < b can be carried out by using the same formulae (17) and (18), since the first-order potential
function ¢;(z,y, K) for this case is known (cf Evans(1970)).
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Fig. 3 Second-order reflection coefficient for submerged barrier Fig. 4 Second-order transmission coefficient for submerged barrier
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